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X-ray diffraction, von Laue description
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X-ray diffraction, von Laue description
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The reciprocal lattice
for a given Bravais lattice

These wave vectors G play a very special role in solid state physics. They
are called the wave vectors of the reciprocal lattice and they are discussed in
more detail in the next section. Condition (3.4) then simply means that the
change in wave vector has to be equal to a reciprocal lattice vector in order to
obtain constructive interference. (3.4) is often called the Laue condition. Our
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Figure 3.11: Path length difference in order to calculate the condition for
constructive interference from a Bravais lattice with a single atom as basis.

treatment of x-ray diffraction does not permit us to make statements about
the intensity of the reflected x-rays, we have merely established the condi-
tion for observing constructive interference. For structural determination,
however, the intensity is very important because it contains the information
about the atomic arrangement or, more general, the charge density, in the
unit cell of the crystal. We also note that the Laue condition (3.4) is neces-
sary but not sufficient to observe constructive interference. In crystals with
more than one atom per unit cell (e.g. two atoms of the same kind), the
waves scattered from the various atoms in the unit cell may interfere in a
destructive way, rendering the intensity zero for some expected reflections.

The reciprocal lattice

The vectors G appearing in (3.5) have such a fundamental importance in
solid state physics that they have a special name, they form the reciprocal
lattice. The following formalism and definitions might appear to be a little
over the top but the meaning of the reciprocal lattice will be discussed in
some detail later and its usefulness will become apparent.

For a given Bravais lattice

R = ma1 + na2 + oa3.

we define the reciprocal lattice as the set of vectors G for which

eiGR = 1.
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the reciprocal lattice is defined as the set of vectors G for which
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orR · G = 2⇡l eiG·R = 1

The reciprocal lattice is also a Bravais lattice

G = m�b1 + n�b2 + o�b3



The reciprocal lattice
construction of the reciprocal lattice

These wave vectors G play a very special role in solid state physics. They
are called the wave vectors of the reciprocal lattice and they are discussed in
more detail in the next section. Condition (3.4) then simply means that the
change in wave vector has to be equal to a reciprocal lattice vector in order to
obtain constructive interference. (3.4) is often called the Laue condition. Our
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Figure 3.11: Path length difference in order to calculate the condition for
constructive interference from a Bravais lattice with a single atom as basis.

treatment of x-ray diffraction does not permit us to make statements about
the intensity of the reflected x-rays, we have merely established the condi-
tion for observing constructive interference. For structural determination,
however, the intensity is very important because it contains the information
about the atomic arrangement or, more general, the charge density, in the
unit cell of the crystal. We also note that the Laue condition (3.4) is neces-
sary but not sufficient to observe constructive interference. In crystals with
more than one atom per unit cell (e.g. two atoms of the same kind), the
waves scattered from the various atoms in the unit cell may interfere in a
destructive way, rendering the intensity zero for some expected reflections.

The reciprocal lattice

The vectors G appearing in (3.5) have such a fundamental importance in
solid state physics that they have a special name, they form the reciprocal
lattice. The following formalism and definitions might appear to be a little
over the top but the meaning of the reciprocal lattice will be discussed in
some detail later and its usefulness will become apparent.

For a given Bravais lattice

R = ma1 + na2 + oa3.

we define the reciprocal lattice as the set of vectors G for which

eiGR = 1.
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6
R · G = 2⇡l

with this it is easy to see why

G = m�b1 + n�b2 + o�b3

b1 = 2⇡
a2 ⇥ a3

a1 · (a2 ⇥ a3)
b2 = 2⇡

a3 ⇥ a1
a1 · (a2 ⇥ a3)

b3 = 2⇡
a1 ⇥ a2

a1 · (a2 ⇥ a3)

a useful relation is
ai · bj = 2⇡�ij



The reciprocal lattice
example 1: in two dimensions

These wave vectors G play a very special role in solid state physics. They
are called the wave vectors of the reciprocal lattice and they are discussed in
more detail in the next section. Condition (3.4) then simply means that the
change in wave vector has to be equal to a reciprocal lattice vector in order to
obtain constructive interference. (3.4) is often called the Laue condition. Our

k k

k'

k'

n

n'

d cosΘ = dn

d cosΘ' = dn'

Θ

d

Θ'

Figure 3.11: Path length difference in order to calculate the condition for
constructive interference from a Bravais lattice with a single atom as basis.

treatment of x-ray diffraction does not permit us to make statements about
the intensity of the reflected x-rays, we have merely established the condi-
tion for observing constructive interference. For structural determination,
however, the intensity is very important because it contains the information
about the atomic arrangement or, more general, the charge density, in the
unit cell of the crystal. We also note that the Laue condition (3.4) is neces-
sary but not sufficient to observe constructive interference. In crystals with
more than one atom per unit cell (e.g. two atoms of the same kind), the
waves scattered from the various atoms in the unit cell may interfere in a
destructive way, rendering the intensity zero for some expected reflections.

The reciprocal lattice

The vectors G appearing in (3.5) have such a fundamental importance in
solid state physics that they have a special name, they form the reciprocal
lattice. The following formalism and definitions might appear to be a little
over the top but the meaning of the reciprocal lattice will be discussed in
some detail later and its usefulness will become apparent.

For a given Bravais lattice

R = ma1 + na2 + oa3.

we define the reciprocal lattice as the set of vectors G for which

eiGR = 1.

23

We can write

G = mb1 + nb2 + ob3,

and it can be shown that this reciprocal lattice is again Bravais lattice. The
vectors spanning the reciprocal lattice can be constructed explicitly from the
real lattice vectors.

g1 = 2π
a2 × a3

a1(a2 × a3)
g2 = 2π

a3 × a1

a1(a2 × a3)
g3 = 2π

a1 × a2

a1(a2 × a3)

From this, one can derive the simple but useful property1

aigj = 2πδij. (3.6)

With the reciprocal lattice one can define the Miller indices in a much
simpler way: The Miller indices (i, j, k) are defining a plane which is perpen-
dicular to the reciprocal lattice vector ib1 + jb2 + kb3.

The Meaning of the Reciprocal Lattice

We have now defined the reciprocal lattice in a proper way and we have
seen that we can get constructive interference in x-ray diffraction only for a
wave vector change which is equal to a reciprocal lattice vector. The deeper
meaning of the reciprocal lattice is, however, still somewhat obscure. We
will try to elucidate this a bit in this section. The most important point of
the reciprocal lattice is that it facilitates the description of lattice periodic
properties. This is of great importance because in most of these lectures we
concentrate on an perfectly periodic infinite solid.

We start with a one dimensional lattice, a chain of points with a lattice
spacing of a. Consider some lattice periodic function, like the charge density
along the chain ρ(x) = ρ(x + a). We can write this as a Fourier series of the
form

ρ(x) = ρ0 +
∞

∑

n=1

{

Cncos(x2πn/a) + Snsin(x2πn/a)
}

(3.7)

with real coefficients Cn and Sn. The sum starts at n = 1, i.e. the constant
part has to be taken out of the sum. We can also write this in a more compact
form

ρ(x) =
∞

∑

n=−∞

ρneixn2π/a, (3.8)

1δij is Kronecker’s delta which is 1 for i = j and zero otherwise.
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|a1|=a

|a2|=b

|b2|=2π/b

|b1|=2π/a

7

ai · bj = 2⇡�ij



The reciprocal lattice
if we have
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eiG·R = 1

The vectors G of the reciprocal lattice give
 plane waves with the periodicity of the lattice.

In this case G is the wave vector and 2π/|G| the wavelength.

then we can write

eiG·r = eiG·reiG·R = eiG·(r+R)

R · G = 2⇡l
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X-ray diffraction, von Laue description
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X-ray diffraction, von Laue description

Volume
V
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Lattice waves

real space reciprocal space
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(0,0)

Von Laue Theory for a Simple Crystal

We now proceed from the assumption that the x-rays are scattered somehow
by the ions in the lattice. Actually, they are scattered by the electrons
surrounding these ions. We start by describing the situation of a Bravais
lattice with a single atom as basis. Fig. 3.11 illustrates this situation. The
incoming x-rays are described by a wave plane wave in the direction n̂ and
with a wave length λ. Therefore their wave vector is k = n̂2π/λ. The
amplitude of the wave a the position r is then

A(r, t) = A0e
ikr−iωt.

In the following we suppress the time-dependence since because it is the same
for all waves of interest. The absolute phase of the wave at the sample is also
not of interest. The only thing which is important is the phase difference
of the two scattered waves in Fig. 3.11. We can therefore just consider the
path length difference. From the figure we can read this to be

dcosΘ + dcosΘ′ = d(n̂ − n̂′).

Again, this must be an integer multiple of λ, so that

d(n̂ − n̂′) = mλ (3.2)

and this must hold very generally for any vector of the Bravais lattice R. If
we write this in terms of k and k′ instead of n̂ and n̂′, we get

R(k− k′) = 2πm.

or
RG = 2πm. (3.3)

where G is the difference vector between incoming and diffracted beam.

k − k′ = G. (3.4)

Let us examine the meaning of this result. It states a condition for the
difference vector G in order to obtain constructive interference. Actually, this
is quite a stringent condition. We can write (3.3) in a completely equivalent
form by requiring that

e(ik−k′)R = eiGR = 1, (3.5)

which means that we get constructive interference only for wave vector dif-
ferences which yield plane waves with the periodicity of the Bravais lattice
because

eiGr = eiGreiGR = eiG(r+R).

22
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Von Laue Theory for a Simple Crystal

We now proceed from the assumption that the x-rays are scattered somehow
by the ions in the lattice. Actually, they are scattered by the electrons
surrounding these ions. We start by describing the situation of a Bravais
lattice with a single atom as basis. Fig. 3.11 illustrates this situation. The
incoming x-rays are described by a wave plane wave in the direction n̂ and
with a wave length λ. Therefore their wave vector is k = n̂2π/λ. The
amplitude of the wave a the position r is then

A(r, t) = A0e
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In the following we suppress the time-dependence since because it is the same
for all waves of interest. The absolute phase of the wave at the sample is also
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of the two scattered waves in Fig. 3.11. We can therefore just consider the
path length difference. From the figure we can read this to be
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Von Laue Theory for a Simple Crystal

We now proceed from the assumption that the x-rays are scattered somehow
by the ions in the lattice. Actually, they are scattered by the electrons
surrounding these ions. We start by describing the situation of a Bravais
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Von Laue Theory for a Simple Crystal

We now proceed from the assumption that the x-rays are scattered somehow
by the ions in the lattice. Actually, they are scattered by the electrons
surrounding these ions. We start by describing the situation of a Bravais
lattice with a single atom as basis. Fig. 3.11 illustrates this situation. The
incoming x-rays are described by a wave plane wave in the direction n̂ and
with a wave length λ. Therefore their wave vector is k = n̂2π/λ. The
amplitude of the wave a the position r is then

A(r, t) = A0e
ikr−iωt.

In the following we suppress the time-dependence since because it is the same
for all waves of interest. The absolute phase of the wave at the sample is also
not of interest. The only thing which is important is the phase difference
of the two scattered waves in Fig. 3.11. We can therefore just consider the
path length difference. From the figure we can read this to be

dcosΘ + dcosΘ′ = d(n̂ − n̂′).

Again, this must be an integer multiple of λ, so that

d(n̂ − n̂′) = mλ (3.2)

and this must hold very generally for any vector of the Bravais lattice R. If
we write this in terms of k and k′ instead of n̂ and n̂′, we get

R(k− k′) = 2πm.

or
RG = 2πm. (3.3)

where G is the difference vector between incoming and diffracted beam.

k − k′ = G. (3.4)

Let us examine the meaning of this result. It states a condition for the
difference vector G in order to obtain constructive interference. Actually, this
is quite a stringent condition. We can write (3.3) in a completely equivalent
form by requiring that

e(ik−k′)R = eiGR = 1, (3.5)

which means that we get constructive interference only for wave vector dif-
ferences which yield plane waves with the periodicity of the Bravais lattice
because
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The reciprocal of the reciprocal lattice
is again the real lattice

These wave vectors G play a very special role in solid state physics. They
are called the wave vectors of the reciprocal lattice and they are discussed in
more detail in the next section. Condition (3.4) then simply means that the
change in wave vector has to be equal to a reciprocal lattice vector in order to
obtain constructive interference. (3.4) is often called the Laue condition. Our
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Figure 3.11: Path length difference in order to calculate the condition for
constructive interference from a Bravais lattice with a single atom as basis.

treatment of x-ray diffraction does not permit us to make statements about
the intensity of the reflected x-rays, we have merely established the condi-
tion for observing constructive interference. For structural determination,
however, the intensity is very important because it contains the information
about the atomic arrangement or, more general, the charge density, in the
unit cell of the crystal. We also note that the Laue condition (3.4) is neces-
sary but not sufficient to observe constructive interference. In crystals with
more than one atom per unit cell (e.g. two atoms of the same kind), the
waves scattered from the various atoms in the unit cell may interfere in a
destructive way, rendering the intensity zero for some expected reflections.

The reciprocal lattice

The vectors G appearing in (3.5) have such a fundamental importance in
solid state physics that they have a special name, they form the reciprocal
lattice. The following formalism and definitions might appear to be a little
over the top but the meaning of the reciprocal lattice will be discussed in
some detail later and its usefulness will become apparent.

For a given Bravais lattice

R = ma1 + na2 + oa3.

we define the reciprocal lattice as the set of vectors G for which

eiGR = 1.
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We can write

G = mb1 + nb2 + ob3,

and it can be shown that this reciprocal lattice is again Bravais lattice. The
vectors spanning the reciprocal lattice can be constructed explicitly from the
real lattice vectors.

g1 = 2π
a2 × a3

a1(a2 × a3)
g2 = 2π

a3 × a1

a1(a2 × a3)
g3 = 2π

a1 × a2

a1(a2 × a3)

From this, one can derive the simple but useful property1

aigj = 2πδij. (3.6)

With the reciprocal lattice one can define the Miller indices in a much
simpler way: The Miller indices (i, j, k) are defining a plane which is perpen-
dicular to the reciprocal lattice vector ib1 + jb2 + kb3.

The Meaning of the Reciprocal Lattice

We have now defined the reciprocal lattice in a proper way and we have
seen that we can get constructive interference in x-ray diffraction only for a
wave vector change which is equal to a reciprocal lattice vector. The deeper
meaning of the reciprocal lattice is, however, still somewhat obscure. We
will try to elucidate this a bit in this section. The most important point of
the reciprocal lattice is that it facilitates the description of lattice periodic
properties. This is of great importance because in most of these lectures we
concentrate on an perfectly periodic infinite solid.

We start with a one dimensional lattice, a chain of points with a lattice
spacing of a. Consider some lattice periodic function, like the charge density
along the chain ρ(x) = ρ(x + a). We can write this as a Fourier series of the
form

ρ(x) = ρ0 +
∞

∑

n=1

{

Cncos(x2πn/a) + Snsin(x2πn/a)
}

(3.7)

with real coefficients Cn and Sn. The sum starts at n = 1, i.e. the constant
part has to be taken out of the sum. We can also write this in a more compact
form

ρ(x) =
∞

∑

n=−∞

ρneixn2π/a, (3.8)

1δij is Kronecker’s delta which is 1 for i = j and zero otherwise.
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|a1|=a

|a2|=b

|b2|=2π/b

|b1|=2π/a
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We can write

G = mb1 + nb2 + ob3,

and it can be shown that this reciprocal lattice is again Bravais lattice. The
vectors spanning the reciprocal lattice can be constructed explicitly from the
real lattice vectors.

b1 = 2π
a2 × a3

a1(a2 × a3)
b2 = 2π

a3 × a1

a1(a2 × a3)
b3 = 2π

a1 × a2

a1(a2 × a3)

From this, one can derive the simple but useful property1

aibj = 2πδij. (3.6)

With the reciprocal lattice one can define the Miller indices in a much
simpler way: The Miller indices (i, j, k) are defining a plane which is perpen-
dicular to the reciprocal lattice vector ib1 + jb2 + kb3.

The Meaning of the Reciprocal Lattice

We have now defined the reciprocal lattice in a proper way and we have
seen that we can get constructive interference in x-ray diffraction only for a
wave vector change which is equal to a reciprocal lattice vector. The deeper
meaning of the reciprocal lattice is, however, still somewhat obscure. We
will try to elucidate this a bit in this section. The most important point of
the reciprocal lattice is that it facilitates the description of lattice periodic
properties. This is of great importance because in most of these lectures we
concentrate on an perfectly periodic infinite solid.

We start with a one dimensional lattice, a chain of points with a lattice
spacing of a. Consider some lattice periodic function, like the charge density
along the chain ρ(x) = ρ(x + a). We can write this as a Fourier series of the
form

ρ(x) = ρ0 +
∞

∑

n=1

{

Cncos(x2πn/a) + Snsin(x2πn/a)
}

(3.7)

with real coefficients Cn and Sn. The sum starts at n = 1, i.e. the constant
part has to be taken out of the sum. We can also write this in a more compact
form

ρ(x) =
∞

∑

n=−∞

ρneixn2π/a, (3.8)

1δij is Kronecker’s delta which is 1 for i = j and zero otherwise.
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The reciprocal lattice in 3D
example 2: in three dimensions bcc and fcc lattice

The fcc lattice is the reciprocal of the bcc lattice and 
vice versa.18

We can write

G = mb1 + nb2 + ob3,

and it can be shown that this reciprocal lattice is again Bravais lattice. The
vectors spanning the reciprocal lattice can be constructed explicitly from the
real lattice vectors.

b1 = 2π
a2 × a3

a1(a2 × a3)
b2 = 2π

a3 × a1

a1(a2 × a3)
b3 = 2π

a1 × a2

a1(a2 × a3)

From this, one can derive the simple but useful property1

aibj = 2πδij. (3.6)

With the reciprocal lattice one can define the Miller indices in a much
simpler way: The Miller indices (i, j, k) are defining a plane which is perpen-
dicular to the reciprocal lattice vector ib1 + jb2 + kb3.

The Meaning of the Reciprocal Lattice

We have now defined the reciprocal lattice in a proper way and we have
seen that we can get constructive interference in x-ray diffraction only for a
wave vector change which is equal to a reciprocal lattice vector. The deeper
meaning of the reciprocal lattice is, however, still somewhat obscure. We
will try to elucidate this a bit in this section. The most important point of
the reciprocal lattice is that it facilitates the description of lattice periodic
properties. This is of great importance because in most of these lectures we
concentrate on an perfectly periodic infinite solid.

We start with a one dimensional lattice, a chain of points with a lattice
spacing of a. Consider some lattice periodic function, like the charge density
along the chain ρ(x) = ρ(x + a). We can write this as a Fourier series of the
form

ρ(x) = ρ0 +
∞

∑

n=1

{

Cncos(x2πn/a) + Snsin(x2πn/a)
}

(3.7)

with real coefficients Cn and Sn. The sum starts at n = 1, i.e. the constant
part has to be taken out of the sum. We can also write this in a more compact
form

ρ(x) =
∞

∑

n=−∞

ρneixn2π/a, (3.8)

1δij is Kronecker’s delta which is 1 for i = j and zero otherwise.

24


