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• Greatly simplifies the description of lattice-periodic functions 
(charge density, one-electron potential...).
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We can write

G = mb1 + nb2 + ob3,

and it can be shown that this reciprocal lattice is again Bravais lattice. The
vectors spanning the reciprocal lattice can be constructed explicitly from the
real lattice vectors.

g1 = 2π
a2 × a3

a1(a2 × a3)
g2 = 2π

a3 × a1

a1(a2 × a3)
g3 = 2π

a1 × a2

a1(a2 × a3)

From this, one can derive the simple but useful property1

aigj = 2πδij. (3.6)

With the reciprocal lattice one can define the Miller indices in a much
simpler way: The Miller indices (i, j, k) are defining a plane which is perpen-
dicular to the reciprocal lattice vector ib1 + jb2 + kb3.

The Meaning of the Reciprocal Lattice

We have now defined the reciprocal lattice in a proper way and we have
seen that we can get constructive interference in x-ray diffraction only for a
wave vector change which is equal to a reciprocal lattice vector. The deeper
meaning of the reciprocal lattice is, however, still somewhat obscure. We
will try to elucidate this a bit in this section. The most important point of
the reciprocal lattice is that it facilitates the description of lattice periodic
properties. This is of great importance because in most of these lectures we
concentrate on an perfectly periodic infinite solid.

We start with a one dimensional lattice, a chain of points with a lattice
spacing of a. Consider some lattice periodic function, like the charge density
along the chain ρ(x) = ρ(x + a). We can write this as a Fourier series of the
form

ρ(x) = ρ0 +
∞

∑

n=1

{

Cncos(x2πn/a) + Snsin(x2πn/a)
}

(3.7)

with real coefficients Cn and Sn. The sum starts at n = 1, i.e. the constant
part has to be taken out of the sum. We can also write this in a more compact
form

ρ(x) =
∞

∑

n=−∞

ρneixn2π/a, (3.8)

1δij is Kronecker’s delta which is 1 for i = j and zero otherwise.
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example: charge density in the chain

Fourier series

alternatively
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using complex coefficients ρn. To ensure that ρ(x) is still a real function, we
have to require that

ρ∗
−n = ρn (3.9)

This description is more elegant than the one with the sine and cosine func-
tions because a constant potential can also be described by choosing a finite
ρ0. How is this related to the reciprocal lattice? In one dimension the recip-
rocal lattice of a chain of points with spacing a is also a chain of points with
spacing 2π/a (see (3.6)). This means that we can write a general reciprocal
lattice ’vector’ as

g = n
2π

a
,

where n is a positive or negative integer. Exactly these reciprocal lattice
’vectors’ appear in the (3.6). In fact, (3.6) is a sum of functions with the
periodicity of the reciprocal lattice vectors, weighted by the coefficients ρn.
Fig. 3.12 illustrates these ideas by showing the lattice and reciprocal lattice
of an infinite chain as well as two lattice periodic functions, as real space
functions and as a number of Fourier coefficients on the reciprocal lattice
points. The advantage of describing the functions by the coefficients ρn is
immediately obvious: instead of giving ρ(x) for every point in a range of
−π/a < x < π/a, the Fourier description consists only of three numbers for
the upper function and five numbers for the lower function. Actually, it is
only 2 and 3 numbers because of (3.9).

The same ideas work also in three dimensions. In fact, one can use a
Fourier sum for lattice periodic properties which exactly corresponds to (3.8).
For the charge density we get

ρ(r) =
∑

G

ρGeiGr.

where G are the reciprocal lattice vectors.
With this we have seen that the reciprocal lattice is very useful for de-

scribing lattice periodic functions. But this is not all: it can also simplify
the treatment of waves in crystals in a very general sense. Such waves can be
x-rays, elastic waves or even electronic wave functions. We will come back
to this point at a later stage.

The Ewald Construction

Also in 1913 P. Ewald published a very intuitive geometrical construction for
visualising the Laue condition (3.4). The construction is shown in Fig. 3.13
which represents a cut through the reciprocal lattice, the black points are
the reciprocal lattice points. The construction works as follows:
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X-ray diffraction, von Laue description

with
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X-ray diffraction, von Laue description
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