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The Ewald construction

• Draw (cut through) the 
reciprocal lattice.

• Draw a k vector 
corresponding to the 
incoming x-rays which 
ends in a reciprocal 
lattice point.

• Draw a circle around the 
origin of the k vector.

• The Laue condition is 
fulfilled for all vectors k’ 
for which the circle hits a 
reciprocal lattice point.

Laue condition
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if G is a rec. lat. vec.K = k� � k = G

• Fig 2.12, Solid 
State Physics: 
An Introduction, 
by Philip 
Hofmann, 
Wiley-VCH 
Berlin.

http://philiphofmann.net/
http://philiphofmann.net/
http://www.wiley-vch.de/publish/en/
http://www.wiley-vch.de/publish/en/


Labelling crystal planes (Miller indices)

1. determine the intercepts
 with the axes in units of the 
lattice vectors

2. take the reciprocal of 
each number

3. reduce the numbers to 
the smallest set of integers 
having the same ratio. 
These are then called the 
Miller indices.

step 1: (2,1,2)
step 2: ((1/2),1,(1/2))

step 3: (1,2,1)
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Example
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Relation to lattice planes / Miller indices
We can write

G = mb1 + nb2 + ob3,

and it can be shown that this reciprocal lattice is again Bravais lattice. The
vectors spanning the reciprocal lattice can be constructed explicitly from the
real lattice vectors.

g1 = 2π
a2 × a3

a1(a2 × a3)
g2 = 2π

a3 × a1

a1(a2 × a3)
g3 = 2π

a1 × a2

a1(a2 × a3)

From this, one can derive the simple but useful property1

aigj = 2πδij. (3.6)

With the reciprocal lattice one can define the Miller indices in a much
simpler way: The Miller indices (i, j, k) are defining a plane which is perpen-
dicular to the reciprocal lattice vector ib1 + jb2 + kb3.

The Meaning of the Reciprocal Lattice

We have now defined the reciprocal lattice in a proper way and we have
seen that we can get constructive interference in x-ray diffraction only for a
wave vector change which is equal to a reciprocal lattice vector. The deeper
meaning of the reciprocal lattice is, however, still somewhat obscure. We
will try to elucidate this a bit in this section. The most important point of
the reciprocal lattice is that it facilitates the description of lattice periodic
properties. This is of great importance because in most of these lectures we
concentrate on an perfectly periodic infinite solid.

We start with a one dimensional lattice, a chain of points with a lattice
spacing of a. Consider some lattice periodic function, like the charge density
along the chain ρ(x) = ρ(x + a). We can write this as a Fourier series of the
form

ρ(x) = ρ0 +
∞

∑

n=1

{

Cncos(x2πn/a) + Snsin(x2πn/a)
}

(3.7)

with real coefficients Cn and Sn. The sum starts at n = 1, i.e. the constant
part has to be taken out of the sum. We can also write this in a more compact
form

ρ(x) =
∞

∑

n=−∞

ρneixn2π/a, (3.8)

1δij is Kronecker’s delta which is 1 for i = j and zero otherwise.
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The vector

is the normal vector to the lattice planes
 with Miller indices (m,n,o)

(m,n,o)plane
k'

G
k

Θ
Θ
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Von Laue Theory for a Simple Crystal

We now proceed from the assumption that the x-rays are scattered somehow
by the ions in the lattice. Actually, they are scattered by the electrons
surrounding these ions. We start by describing the situation of a Bravais
lattice with a single atom as basis. Fig. 3.11 illustrates this situation. The
incoming x-rays are described by a wave plane wave in the direction n̂ and
with a wave length λ. Therefore their wave vector is k = n̂2π/λ. The
amplitude of the wave a the position r is then

A(r, t) = A0e
ikr−iωt.

In the following we suppress the time-dependence since because it is the same
for all waves of interest. The absolute phase of the wave at the sample is also
not of interest. The only thing which is important is the phase difference
of the two scattered waves in Fig. 3.11. We can therefore just consider the
path length difference. From the figure we can read this to be

dcosΘ + dcosΘ′ = d(n̂ − n̂′).

Again, this must be an integer multiple of λ, so that

d(n̂ − n̂′) = mλ (3.2)

and this must hold very generally for any vector of the Bravais lattice R. If
we write this in terms of k and k′ instead of n̂ and n̂′, we get

R(k− k′) = 2πm.

or
RG = 2πm. (3.3)

where G is the difference vector between incoming and diffracted beam.

k − k′ = G. (3.4)

Let us examine the meaning of this result. It states a condition for the
difference vector G in order to obtain constructive interference. Actually, this
is quite a stringent condition. We can write (3.3) in a completely equivalent
form by requiring that

e(ik−k′)R = eiGR = 1, (3.5)

which means that we get constructive interference only for wave vector dif-
ferences which yield plane waves with the periodicity of the Bravais lattice
because

eiGr = eiGreiGR = eiG(r+R).
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Why does the Bragg condition appear so much 
simpler?

Laue condition
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automatically fulfilled parallel to the surface 
(choosing specular reflection)

A
B

d

e e

e e

2d sin� = m�

1D reciprocal lattice in this direction:

define vector d connecting the planes

G� = m
2�

d
k k’

k?

K = k� � k = G

k0? � k? = 2k? = 2
2⇡

�
sin⇥ = G?



x-ray diffraction in practice
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Laue Method

• Using white x-rays in transmission or reflection.

• Obtain the symmetry of the crystal along a certain axis.
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x-ray source

crystal
detector
(screen)



Powder Diffraction
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reciprocal lattice point



advanced X-ray diffraction
• The position of the spots gives information about the 

reciprocal lattice and thus the Bravais lattice.

• An intensity analysis can give information about the basis.

• Even the structure of a very complicated basis can be 
determined (proteins...) 
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every spot

crystallize
protein

We can write

G = mb1 + nb2 + ob3,

and it can be shown that this reciprocal lattice is again Bravais lattice. The
vectors spanning the reciprocal lattice can be constructed explicitly from the
real lattice vectors.

b1 = 2π
a2 × a3

a1(a2 × a3)
b2 = 2π

a3 × a1

a1(a2 × a3)
b3 = 2π

a1 × a2

a1(a2 × a3)

From this, one can derive the simple but useful property1

aibj = 2πδij. (3.6)

With the reciprocal lattice one can define the Miller indices in a much
simpler way: The Miller indices (i, j, k) are defining a plane which is perpen-
dicular to the reciprocal lattice vector ib1 + jb2 + kb3.

The Meaning of the Reciprocal Lattice

We have now defined the reciprocal lattice in a proper way and we have
seen that we can get constructive interference in x-ray diffraction only for a
wave vector change which is equal to a reciprocal lattice vector. The deeper
meaning of the reciprocal lattice is, however, still somewhat obscure. We
will try to elucidate this a bit in this section. The most important point of
the reciprocal lattice is that it facilitates the description of lattice periodic
properties. This is of great importance because in most of these lectures we
concentrate on an perfectly periodic infinite solid.

We start with a one dimensional lattice, a chain of points with a lattice
spacing of a. Consider some lattice periodic function, like the charge density
along the chain ρ(x) = ρ(x + a). We can write this as a Fourier series of the
form

ρ(x) = ρ0 +
∞

∑

n=1

{

Cncos(x2πn/a) + Snsin(x2πn/a)
}

(3.7)

with real coefficients Cn and Sn. The sum starts at n = 1, i.e. the constant
part has to be taken out of the sum. We can also write this in a more compact
form

ρ(x) =
∞

∑

n=−∞

ρneixn2π/a, (3.8)

1δij is Kronecker’s delta which is 1 for i = j and zero otherwise.
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remember

I(K = G) / |⇢G|2



advanced x-ray sources: synchrotron radiation

• A highly collimated and monochromatic beam is needed for 
protein crystallography.

• This can only be provided by a synchrotron radiation source.

SPring-8
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What is in the basis?
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I(K) � |
�

V
�(r)ei(k�k�)·rdV |2 = |

�

V
�(r)e�iK·rdV |2

K = Gwith

⇢(r)
X

j

⇢j(r� rj)

(sum over the j atoms in the unit cell, model this)

I(G) � |
Z

V
�(r)e�iG·rdV |2

we have N unit cells in the crystal and write this as sum over 
cells

I(G) / |N
Z

Vcell

⇢(r)e�iG·rdV |2

I(G) / |
X

R

Z

Vcell

⇢(r�R)e�iG·(r�R)dV |2 = |
X

R

Z

Vcell

⇢(r)e�iG·reiG·RdV |2



Inelastic scattering

• Gain information about possible excitations in the crystal 
(mostly lattice vibrations). Not discussed here.

13



Other scattering methods (other than x-rays)

• electrons (below)

• neutrons
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Electron microscopes / electron diffraction

• Electrons can also have a de Broglie wavelength similar to 
the lattice constant in crystals.

• For electrons we get

This gives a wavelength of 5 Å for an energy of 6 eV.
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