Quantum Mechanics

Prof. Dr. Handan Olgar

Ankara University

November 5, 2020

Lets continue from the first part: Also, the first derivatives of the solution must e continuous at region boundaries:

$$
\begin{aligned}
& {[x=0] \quad \rightarrow \quad \frac{d \Psi_{I}(x)}{d x}=\frac{d \Psi_{I I}(x)}{d x}} \\
& {[x=L] \quad \rightarrow \quad \frac{d \Psi_{I I}(x)}{d x}=\frac{d \Psi_{I I I}(x)}{d x}}
\end{aligned}
$$

then we can write:

$$
\begin{aligned}
& A+b=C+D \quad \text { and } \quad C e^{k_{I I} L}+D e^{-k_{I I} L}=F e^{k_{I I} L} \\
& -i k_{I}(A-B)=k_{I I}(D-C) \text { and } \quad k_{I I}\left(D e^{k_{I I} L}-C e^{-k_{I I} L}\right)=-i k_{I I} F e^{k_{I I} L} \\
& A=\frac{C\left(i k_{I}+k_{I I}\right)+D\left(i k_{I}-k_{I I}\right)}{2 i k_{I}} \quad C=\frac{F\left(i k_{I}+k_{I I}\right) e^{i k_{I} L}}{2 k_{I I} e^{k_{I} L}} \quad D=\frac{F\left(k_{I I}-i k\right.}{2 k_{I I} e^{-}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{A}{F}=\frac{e^{i k_{l} L}}{4 i k_{I} k_{\|}}\left[\left(k_{I I}^{2}-k_{I}^{2}\right) e^{-k_{\|} L}+2 i k_{I} k_{\|} e^{-k_{\|} L}-\left(k_{I I}^{2}-k_{I}^{2}\right) e^{k_{\|} L}+2 i k_{I} k_{I I} e^{k_{\|} L}\right] \\
\frac{|F|^{2}}{|A|^{2}}=\frac{16 k_{I}^{2} k_{\|}^{2}}{16 k_{I}^{2} k_{I I}^{2}+\left[16 k_{I}^{2} k_{I I}^{2}+4\left(k_{I I}^{2}-k_{I}^{2}\right)^{2}\right] \sinh h^{2}\left(k_{\| I} L\right)}
\end{gathered}
$$

The potential functions are :
$V(x)=0$ when $x<0$,
$V(x)=V_{0}$ when $0 \leq x \leq L$ and
$V_{x}=0$ when $x>L$

Lets write the general Schrodinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x)}{d x^{2}}+V(x) \Psi(x)=E \Psi(x)
$$

As we divided space into three regions lets write Schrodinger equation for every region:

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi_{I}(x)}{d x^{2}}=E \Psi_{I}(x), \text { In region } \quad I: x<0 \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi_{I I}(x)}{d x^{2}}+V_{0} \Psi(x)=E \Psi_{I I}(x), \quad \text { In region II: } 0 \leq x \leq L \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi_{I I}(x)}{d x^{2}}=E \Psi_{I I I}(x), \quad \text { In region III: } x>L
\end{gathered}
$$

Following these relation we found that our wavefunctions are:

$$
\begin{gathered}
\Psi_{I}=A e^{i k_{I} x}+B e^{-i k_{I} x}, \quad k_{I}=\frac{\sqrt{2 m E}}{\hbar} \\
\Psi_{I I}=C e^{i k_{I I} x}+D e^{-i k_{I I} x}, \quad k_{I I}=\frac{\sqrt{2 m\left(E-V_{o}\right)}}{\hbar} \\
\Psi_{I I I}=F e^{i k_{I I} x}+G e^{-i k_{I I \prime} x}, \quad k_{I I I}=\frac{\sqrt{2 m E}}{\hbar}, \quad k_{I I I}=k_{I} \quad G=0
\end{gathered}
$$

It is clear that, the incident wave is $\Psi_{i n}(x)=A e^{i k_{l} x}$, reflected wave is $\Psi_{\text {ref }}(x)=B e^{-i k_{l} x}$ and transmitter wave is $\Psi_{\text {tra }}(x)=F e^{i k_{I I \prime} x}$. The current density:
$J=\frac{i \hbar}{2 m}\left(\Psi(x) \frac{d \Psi^{*}}{d x}-\Psi^{*}(x) \frac{d \Psi}{d x}\right)$. Then the transmission and reflection probability is $R=\frac{\left|J_{\text {ref }}\right|}{\left|J_{\text {in }}\right|}$ and $T=\frac{\left|J_{\text {tra }}\right|}{\left|J_{\text {in }}\right|}$.

The transmission probability requires that:

$$
T=\frac{\left|J_{t r a}\right|}{\left|J_{i n}\right|}=\frac{k_{l}|F|^{2}}{k_{I I I}|A|^{2}}=\frac{|F|^{2}}{|A|^{2}}
$$

The reflection probability requires that:

$$
R=\frac{\left|J_{r e f}\right|}{\left|J_{i n}\right|}=\frac{|B|^{2}}{|A|^{2}}
$$

