# Quantum Mechanics 

Prof. Dr. Handan Olgar

Ankara University

November 5, 2020

The continuity condition requires that:

$$
\begin{array}{clllll}
\Psi_{I}(0)=\Psi_{I I}(0), & \text { boundary } & \text { between } & \text { regionsl and II } \\
\Psi_{I I}(L)=\Psi_{I I I}(L), & \text { boundary } & \text { between } & \text { regionsll } & \text { and } \quad \text { III }
\end{array}
$$

Also, the first derivatives of the solution must e continuous at region boundaries:

$$
\begin{aligned}
& {[x=0] \quad \rightarrow \quad \frac{d \Psi_{I}(x)}{d x}=\frac{d \Psi_{I I}(x)}{d x}} \\
& {[x=L] \quad \rightarrow \quad \frac{d \Psi_{I I}(x)}{d x}=\frac{d \Psi_{I I I}(x)}{d x}}
\end{aligned}
$$

then we can write:

$$
A+B=C+D \quad \text { and } \quad C e^{i k_{\|} L}+D e^{-i k_{\|} L}=F e^{i k_{I I} L}
$$

$$
-i k_{I}(A-B)=i k_{I I}(D-C) \quad \text { and } \quad i k_{I I}\left(D e^{i k_{\|} L}-C e^{-i k_{\|} L}\right)=-i k_{I I} F e^{k_{I I} L}
$$

from all those relations we find :

$$
F=4 k_{I} k_{I I} A e^{-i k_{l} L}\left[4 k_{I} k_{I I} \cos \left(k_{I I} L\right) B i g-2 i\left(k_{I}^{2}+k_{I I}^{2}\right) \sin \left(k_{2} a\right)\right]
$$

$$
\begin{aligned}
\frac{F}{A} & =\frac{4 k_{I} k_{I I}}{\sqrt{16 k_{I}^{2} k_{I I}^{2} \cos ^{2}\left(k_{I I} L\right)+4 k_{I}^{2} k_{I I}^{2} \sin ^{2}\left(k_{I I} L\right)}} \\
T & \left.=\left[1+\frac{1}{4} \frac{\left(k_{I}-\left(k_{I I}\right)^{2}\right.}{k_{I} k_{I I}}\right)^{2} \sin ^{2}\left(k_{I I} a\right) B i g\right]^{-1}
\end{aligned}
$$

