Quantum Mechanics

Prof. Dr. Handan Olgar

Ankara University

November 5, 2020

The Hilbert space for of angular momentum states for spin 1 is three-dimensional: s, m is $1,1,1,0$ and 1,1 those states are similar to angular momentum $I=1$ states. All analogy are same. We are going to derive now all these expression below:

$$
S^{2} s, m=s(s+1) \hbar^{2} s, m
$$

$$
S_{z} s, m=m \hbar s, m
$$

$$
S_{+} s, m=\hbar \sqrt{s(s+1)-m(m+1)} s, m+1
$$

$$
S_{+} s, m_{\max }=0
$$

$$
S_{-} s, m=\hbar \sqrt{s(s+1)-m(m-1)} s, m-1
$$

$$
S_{-} s, m_{\min }=0
$$

$$
\begin{aligned}
& S_{x}=\frac{S_{+}+S_{-}}{2} \\
& S_{y}=\frac{S_{+}-S_{-}}{2 i}
\end{aligned}
$$

And we will also express these operators in matrix form:

$$
\hat{S}_{+}=\hbar \sqrt{2}\left|\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right|
$$

$$
\begin{aligned}
& \hat{S}^{2}=2 \hbar^{2}\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right| \quad \hat{S}_{z}=\hbar\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right| \\
& \hat{S}_{x}=\frac{\hbar}{\sqrt{2}}\left|\begin{array}{lll|}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right| \\
& \hat{S}_{y}=\frac{\hbar}{i \sqrt{ } 2}\left|\begin{array}{ccc|}
0 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right|
\end{aligned}
$$

Example: Lets write specific Hamiltonian $\hat{H}=A \hat{S}_{z}+B \hat{S}_{x}^{2}$: and find the eigenvalues and eigenvectors of this Hamiltonian

$$
\begin{gathered}
\hat{H}=A \hbar\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right|+B \frac{\hbar^{2}}{2}\left|\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right|\left|\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right|=A \hbar\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right|+B \frac{\hbar^{2}}{2}\left|\begin{array}{l}
1 \\
0 \\
1
\end{array} \hat{H}=\left|\begin{array}{ccc}
A \hbar+B \hbar^{2} / 2 & 0 & B \hbar^{2} / 2 \\
0 & B \hbar^{2} & 0 \\
B \hbar^{2} / 2 & 0 & B \hbar^{2} / 2-A \hbar
\end{array}\right|\right.
\end{gathered}
$$

Further look at and study the Section 5.8 from the book Zettili

