PHY 431
 ADVANCED QUANTUM MECHANICS I

Prof. Dr. Handan OLĞAR

Course notes are prepared from the book Quantum Mechanics-Concepts and Applications by Zettili.

MATHEMATICAL TOOLS IN QUANTUM MECHANICS

-Hilbert Space and Wave Functions

- Dirac Notation
- Operators -General Definition
- Hermitian Adjoint
- Hermitian Operators
-Commutator Algebra

Hilbert Space and wave functions

A linear vector space consists of two sets of elements and two algebraic rules:

- a set of vectors ψ, ϕ, χ, \ldots and a set of scalars a, b, c,
- a rule for vector addition and a rule for scalar multiplication.
- Addition rule: The addition rule has the properties and structure of an abelian group
- Multiplication rule:The product of a scalar with a vector gives another vector.

Dirac Notation

-The physical state of a system is represented in quantum mechanics by elements of a Hilbert space; these elements are called state vectors. We can represent the state vectors in different bases by means of function expansions.

- To free state vectors from coordinate meaning, Dirac introduced what was to become an invaluable notation in quantum mechanics; it allows one to manipulate the formalism of quantum mechanics with ease and clarity.
- Kets: elements of a vector space: Dirac denoted the state vector ψ by the symbol $|\psi\rangle$, which he called a ket vector, or simply a ket. Kets belong to the Hilbert (vector) space H, or, in short, to the ket-space.
- Bras: elements of a dual space: Dirac denoted the elements of a dual space by the symbol <|, which he called a bra vector, or simply a bra; for instance, the element $<\psi \mid$ represents a bra.
- Bra-ket: Dirac notation for the scalar product:
- Dirac denoted the scalar (inner) product by the symbol <|>, which he called a a bra-ket. For instance, the scalar product ψ and ϕ is denoted by the bra-ket $\langle\psi \mid \phi\rangle$.

Operators

- General definition: An operatör A is a mathematical rule that when applied to a ket $|\psi\rangle$ transforms it into another ket $\mid \psi^{\prime}>$ of the same space and when it acts on a bra $<\phi \mid$ transforms it into another bra : < $\phi^{\prime} \mid$

$$
\hat{A}|\psi\rangle=\left|\psi^{\prime}\right\rangle, \quad\langle\phi| \hat{A}=\left\langle\phi^{\prime}\right| .
$$

Hermitian Adjoint

The Hemitian adjoint or coniugqate', a!, of a comples number a is the comples comiugate of this unumber: $a^{\dagger}=a^{*}$. The Hemimitann adjoint, or simply the adjoint, \hat{A}^{\dagger}, of an operator \hat{A} is defined by this relation:

$$
\langle\psi| \hat{A}^{\dagger}|\phi\rangle=\langle\phi| \hat{A}|\psi\rangle^{*} .
$$

Following these rules, we can write

$$
\begin{aligned}
\left(\hat{A}^{\dagger}\right)^{\dagger} & =\hat{A}, \\
\left(a \hat{A}^{\dagger}\right)^{\dagger} & =a^{*} \hat{A}^{\dagger}, \\
\left(\hat{A}^{n}\right)^{\dagger} & =\left(\hat{A}^{\dagger}\right)^{n}, \\
(\hat{A}+\hat{B}+\hat{C}+\hat{D})^{\dagger} & =\hat{A}^{\dagger}+\hat{B}^{\dagger}+\hat{C}^{\dagger}+\hat{D}^{\dagger}, \\
\left.(\hat{A} \hat{B} \hat{C})^{\dagger}\right)^{\dagger} & =\hat{D}^{\dagger} \hat{C}^{\dagger} \hat{B}^{\dagger} \hat{A}^{\dagger}, \\
(\hat{A} \hat{B} \hat{C} \hat{D}|\psi\rangle)^{\dagger} & =\langle\psi| D^{\dagger} C^{\dagger} B^{\dagger} A^{\dagger} .
\end{aligned}
$$

- Further discussions about the mathematical concepts of Quantum Mechanics are discussed from the book Quantum MechanicsConcepts and Applications by Zettili.

