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Lets continue from the first part: Also, the first derivatives of the
solution must e continuous at region boundaries:
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then we can write:
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The potential functions are :
V(x) = 0 when x<0,

V(x) = Vo when 0 < x < L and
V, = 0 when x>L

Lets write the general Schrodinger equation
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+ V(x)¥(x) = EV(x)



As we divided space into three regions lets write Schrodinger
equation for every region:
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= EV(x), In region Ill: x>L



Following these relation we found that our wavefunctions are:
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It is clear that, the incident wave is W;,(x) = Ae™* | reflected
wave is W,.¢(x) = Be~* and transmitter wave is
W,a(x) = Fekm: The current density:

J = (W(x)LE — w*(x)LY) . Then the transmission and

reflection probability is R = ‘Jj—““ andT = %



The transmission probability requires that:
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The reflection probability requires that:
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