Advanced Quantum Mechanics

Prof. Dr. Handan Olgar

Ankara University

February 5, 2020

Quantum Step Problem

- $E<V_{0}$

The potential functions are : $V(x)=0$ when $x<0$ and $V(x)=V_{0}$ when $x \geq 0$ Lets write down the general formula of Schrodinger equation again:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x)}{d x^{2}}+V(x) \Psi(x)=E \Psi(x)
$$

As we divided space into two regions lets write Schrodinger equation for every region:

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi_{I}(x)}{d x^{2}}=E \Psi_{I}(x), \quad \text { In region } \quad I: x<0 \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi_{I I}(x)}{d x^{2}}+V_{0} \Psi(x)=E \Psi_{I I}(x), \quad \text { In region } \quad I I: x \geq 0
\end{gathered}
$$

Following these relation we found that our wave-functions are:

$$
\begin{gathered}
\psi_{I}=A e^{i k_{I} x}+B e^{-i k_{I} x}, \quad k_{I}=\frac{\sqrt{2 m E}}{\hbar} \\
\psi_{I I}=C e^{k_{\|} x}+D e^{-k_{\| I} x}, \quad k_{I I}=\frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar}, \quad C=0
\end{gathered}
$$

The current density: $J=\frac{i \hbar}{2 m}\left(\Psi(x) \frac{d \Psi^{*}}{d x}-\Psi^{*}(x) \frac{d \Psi}{d x}\right)$. Then the transmission and reflection probability is $R=\frac{\left|J_{\text {ref }}\right|}{\left|J_{\text {in }}\right|}$ and $T=\frac{\left|J_{\text {tra }}\right|}{\left|J_{\text {in }}\right|}$.

$$
\begin{gathered}
R=\frac{\left|J_{r e f}\right|}{\left|J_{i n}\right|}=\frac{|B|^{2}}{|A|^{2}} \\
T=\frac{\left|J_{\text {tra }}\right|}{\left|J_{i n}\right|}=0 \\
R+T=1
\end{gathered}
$$

The continuity condition requires that:

$$
\Psi_{I}(0)=\Psi_{I /}(0), \quad \text { boundary between regionsl and } \quad / I
$$

Also, the first derivatives of the solution must e continuous at region boundaries:

$$
[x=0] \quad \rightarrow \quad \frac{d \Psi_{I}(x)}{d x}=\frac{d \Psi_{I I}(x)}{d x}
$$

then we can write:

$$
A+B=D \quad \text { and } \quad i k_{l}(A-B)=-i k_{\| l} D
$$

from those relations $B=\frac{k_{1}-i k_{2}}{k_{1}+i k_{l \mid}} A$ and $D=\frac{2 k_{1}}{k_{1}+k_{2}} A$ from this:

$$
R=\frac{\left|k_{I}-i k_{l l}\right|^{2}}{\left|k_{I}+i k_{2}\right|^{2}}=1
$$

