Advanced Quantum Mechanics

Prof. Dr. Handan Olgar

Ankara University

February 4, 2020

$E>V_{0}$

- $E>V_{0}$

The potential functions are : $V(x)=0$ when $x<0$ and $V(x)=V_{0}$ when $x \geq 0$ Lets write down the general formula of Schrodinger equation again:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x)}{d x^{2}}+V(x) \Psi(x)=E \Psi(x)
$$

As we divided space into two regions lets write Schrodinger equation for every region:

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi_{I}(x)}{d x^{2}}=E \Psi_{I}(x), \quad \text { In region } \quad I: \quad x<0 \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi_{I I}(x)}{d x^{2}}+V_{0} \Psi(x)=E \Psi_{I I}(x), \quad \text { In region } \quad I I: x \geq 0
\end{gathered}
$$

Following these relation we found that our wave-functions are:

$$
\begin{gathered}
\Psi_{I}=A e^{i k_{I} x}+B e^{-i k_{I} x}, \quad k_{I}=\frac{\sqrt{2 m E}}{\hbar} \\
\Psi_{I I}=C e^{i k_{\| \prime} x}+D e^{-i k_{\| l} x}, \quad k_{\| I}=\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar}, \quad D=0
\end{gathered}
$$

The current density: $J=\frac{i \hbar}{2 m}\left(\Psi(x) \frac{d \Psi^{*}}{d x}-\Psi^{*}(x) \frac{d \Psi}{d x}\right)$. Then the transmission and reflection probability is $R=\frac{\left|J_{\text {ref }}\right|}{\left|J_{\text {in }}\right|}$ and $T=\frac{\left|J_{\text {tra }}\right|}{\left|J_{\text {in }}\right|}$.

$$
\begin{gathered}
R=\frac{\left|J_{r e f}\right|}{\left|J_{i n}\right|}=\left|\frac{-\hbar k_{l}|B|^{2}}{m} \frac{m}{\hbar|A|^{2} k_{l}}\right|=\frac{|B|^{2}}{|A|^{2}} \\
T=\frac{\left|J_{\text {tra }}\right|}{\left|J_{i n}\right|}=\left|\frac{\hbar k_{l l}|C|^{2}}{m} \frac{m}{\hbar|A|^{2} k_{l}}\right|=\frac{k_{I l}|B|^{2}}{k_{l}|A|^{2}} \\
R+T=1
\end{gathered}
$$

The continuity condition requires that:

$$
\Psi_{I}(0)=\Psi_{I /}(0), \quad \text { boundary between regionsl and } \quad / I
$$

Also, the first derivatives of the solution must e continuous at region boundaries:

$$
[x=0] \quad \rightarrow \quad \frac{d \Psi_{I}(x)}{d x}=\frac{d \Psi_{I I}(x)}{d x}
$$

then we can write:

$$
A+B=C \quad \text { and } \quad i k_{l}(A-B)=i k_{l /} C
$$

from that relation $C=\frac{2 k_{1}}{k_{1}+k_{2}} A$ and $B=\frac{k_{1}-k_{11}}{k_{1}+k_{1 \prime}} A$ so our transmission and reflection:

$$
R=\frac{\left(k_{1}-k_{2}\right)^{2}}{\left(k_{1}+k_{2}\right)^{2}} \quad T=\frac{k_{I I} 4 k_{l}^{2}}{k_{l}\left(k_{1}+k_{2}\right)^{2}}
$$

Lets transform it:

$$
\begin{gathered}
\bar{k}=\frac{k_{2}}{k_{1}} \sqrt{1-\frac{V_{0}}{E}} \quad R=\frac{(1-\bar{k})^{2}}{(1+\bar{k})^{2}} \quad T=\frac{k_{1 /} 4 \bar{k}^{2}}{(1+\bar{k})^{2}} \\
\quad \text { if } \quad E \rightarrow V_{0}, \quad T \rightarrow 0 \\
\text { if } E \rightarrow \infty, \quad V_{0} / E \rightarrow 0, \quad R \rightarrow 0, \quad T \rightarrow 1
\end{gathered}
$$

