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Harmonic Oscillator operators

Derivations of Harmonic oscillator operators First of all, lets derive
H %, %2, p, ;32 operators for harmonic oscillator. Lets write
Schrodinger equation for one-dimensional harmonic oscillator.
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also in Dirac notation:
Hn= E,n
as we see Hamiltonian is:
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lets rewrite Hamiltonian as:
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then we have:
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Lets introduce the notation:
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Those are the ladder operators and we can therefore write
Hamiltonian as :
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[H,a-] = [hw(é+§_+§), a_]=hwlaya_,a_] since [E’é_] =0

[4.5_,3_ ] =3,4_,5_—5,3_,5_=[5,8_]a_=—a_

sincela_,a;]=1 and [5;,3_]=-1



Using this relations:
[H,a_] = —hwa_

Using same analogy we can define that:
[H,3,] = hway

Let us now compute:

H(a_n) = a_Hn+[H,5.]n= Ena_n—hwi_n = (E,,—hw)(é_n)
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Using same analogy:

Hayn = (Ep+ hw)atn
We can summarize these results:
agn=cyn+1
a_n=d,n—1

Where ¢, and d, are constants of proportionality (NOT
eigenvalues!) and,

Hn+1=E,in+1=(E, +hw)n+1

Hn—1=E, 1n—1=(E,— hw)n—1
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Since 3_0 = 0 Lets find:
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HO = hw(aya- + 5)0 = EHMO = Ep0

In general form:

N 1
Hn=E,n=(n+ E)hwn n=20,1,2,3, ...




