Advanced Quantum Mechanics

Prof. Dr. Handan Olgar

Ankara University

February 7, 2020

Lets continue from the first part: we found the relations $a_1 = 0$, $b_1 = 0$ and $c_1 = 0$. Then, $a_2 = h\sqrt{2}$, $b_2 = 0$ and $c_2 = 0$. Also, $a_3 = 0$, $b_3 = h\sqrt{2}$ and $c_3 = 0$.

	0	$\sqrt{2}$	0
$\hat{L}_{+} = \hbar$	0	0	$\sqrt{2}$
	0	0	0

Lets use same analogy for L_{-} :

$$L_{-1}, 1 = 0$$
 $L_{+1}, 0 = \hbar\sqrt{2} \begin{vmatrix} 1\\0\\0 \end{vmatrix}$ $L_{+1}, -1 = \hbar\sqrt{2} \begin{vmatrix} 0\\1\\0 \end{vmatrix}$

Lets be more clear lets assume that :

$$L_{-} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_2 \end{vmatrix}$$

if:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_2 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{vmatrix} = \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix}$$
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_2 \end{vmatrix} \begin{vmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{vmatrix} = \hbar\sqrt{2} \begin{vmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{vmatrix}$$
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_2 \end{vmatrix} \begin{vmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{vmatrix}$$

we found the relations $a_1 = 0$, $b_1 = \sqrt{2}$ and $c_1 = 0$. Then, $a_2 = 0$, $b_2 = 0$ and $c_2 = \sqrt{2}$. Also, $a_3 = 0$, $b_3 = 0$ and $c_3 = 0$.

$$\hat{L}_{-} = \hbar \begin{vmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{vmatrix}$$

Using same analogy we can find that:

$$egin{array}{c|c} \hat{L}^2 = 2\hbar^2 egin{array}{cc|c} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ \end{array} \end{array}$$

Further study and solve the following exercises from the book by Zettili Study Problem 5.1 pg 310 Study Problem 5.4 pg 312