Textbook: J. M. Smith, H. C. Van Ness, M.M. Abbott, **Introduction to Chemical Engineering Thermodynamics,** Fifth edition, McGraw-Hill International Editions, 1996.

Supplementary References

Stanley I. Sandler, **Chemical and Engineering Thermodynamics,** Third edition John Wiley & Sons Inc, 1998.

J. Richard Elliott, Carl T. Lira, **Introductory Chemical Engineering Thermodynamics,** 2nd edition Prentice Hall International Series in the Physical and Chemical Engineering Sciences, 1999.

SOLUTION THERMODYNAMICS: THEORY

In this chapter:

•To develop a fundamental property relation for homogenous solutions of variable composition,

•Partial properties and the mathematical definitions,

•Chemical potential,

•Property relations valid for ideal-gas mixtures,

•Concept of fugacity and the ideal solution,

•Excess properties,

•Concept of activity and the activity coefficient, and so on.

Fundamental Property Relation

Equation expresses the basic relation connecting the Gibbs energy to the temperature and pressure in any **closed system**:

$$d(nG) = (nV)dP - (nS)dT$$

n: the numbers of moles of all chemical species This closed system is then of constant composition, and we can write immediately that.

$$\left[\frac{\partial(nG)}{\partial P}\right]_{T,n} = nV \text{ and } \left[\frac{\partial(nG)}{\partial T}\right]_{P,n} = nS \text{ (no chemical reaction)}$$

n: the numbers of moles of all chemical species

The derivative of **nG** with respect to the number of moles of species **i** has a special significance, and is given its own symbol and name. Thus, we define the <u>chemical potential</u> of species **i** in the mixture as

$$\mu_{i} \equiv \left[\frac{\partial (nG)}{\partial n_{i}}\right]_{P,T,n_{j}}$$

Expressed in terms of μ_i , the general equation for d(nG) is

$$d(nG) = (nV)dP - (nS)dT + \sum_{i} \mu_{i}dn_{i}$$

fundamental property relation for single-phase fluid systems of constant or variable mass and constant or variable composition.

Chemical Potential as a Criterion for Phase Equilibria

Consider a **closed system** consisting of two phases in equilibrium. Within this closed system, each of the individual phases is an **open system**, free to transfer mass to the other.

Equation 10.2 may therefore be written for each phase:

$$d(nG)^{\alpha} = (nV)^{\alpha} dP - (nS)^{\alpha} dT + \sum_{i} \mu_{i}^{\alpha} dn_{i}^{\alpha}$$

Partial Properties

The defination of the chemical potential by Eq. ($\mu_i \equiv \left[\frac{\partial(nG)}{\partial n_i}\right]_{P,T,n_j}$) as the mole–number derivative of nG

suggests that such derivatives may be of particular use in solution thermodynamics. Thus we write

$$\overline{M}_{i} \equiv \left[\frac{\partial(nM)}{\partial n_{i}}\right]_{P,T,n_{j}}$$

This equation defines the **partial molar property** M_i of species **i** in solution, where \overline{M}_i may represent the partial molar internal energy \overline{U}_i and so on....

 $\begin{array}{ccc} \overline{M}_{i} & \mbox{the partial molar internal energy} & \overline{U}_{i} \\ & \mbox{the partial molar enthalpy} & \overline{H}_{i} \\ & \mbox{the partial molar entropy} & \overline{S}_{i} \\ & \mbox{the partial molar Gibbs energy} & \overline{G}_{i} & \mbox{etc.} \end{array}$

From partial properties ? calculation of solution properties

$$nM = M(P, T, n_1, n_2, ..., n_i, ...)$$

It is possible also to calculate solution properties from partial properties

The total differential of **nM**

$$d(nM) = \left[\frac{\partial(nM)}{\partial P}\right]_{T,n} dP + \left[\frac{\partial(nM)}{\partial T}\right]_{P,n} dT + \sum_{i} \left[\frac{\partial(nM)}{\partial n_{i}}\right]_{P,T,n} j$$

where subscript \mathbf{n} indicates that all mole numbers are held constant, and subscript \mathbf{n}_j that all mole numbers except \mathbf{n}_i are held constant.

For differantiation at constant composition we may write x instead of n

$$d(nM) = n \left(\frac{\partial M}{\partial P}\right)_{T,x} dP + n \left(\frac{\partial M}{\partial T}\right)_{P,x} dT + \sum_{i} \overline{M}_{i} dn_{i}$$
10.9
where subscript **x** denotes differentiation at constant composition.
Since $n_{i} = X_{i}n$
Replacing dn_{i} by this expression and replacing $d(nM)$ by the identity

 $d(nM) \equiv ndM + Mdn$

we write Eq. as

$$ndM + Mdn = n \left(\frac{\partial M}{\partial P}\right)_{T,x} dP + n \left(\frac{\partial M}{\partial T}\right)_{P,x} dT + \sum_{i} \overline{M}_{i} \left(x_{i}dn + ndxi\right)$$