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10.4 Ideal-Gas Mixtures (Ideal-Gaz Karışımları) 
 

If n moles of an ideal gas mixture occupy a total volume V
t
 at 

temperature T, the pressure is  
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If the ni moles of species i in this mixture occupy the same total 

volume alone at the same temperature, the pressure is 
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Dividing the latter equation by the former one 
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or ii Pxp    (i = 1,2,…,N)   10.20 



10.5 Fugacity and Fuagacity Coefficient for a Pure Species

Saf Bileşlerin Fügasitesi ve Fügasite Katsayısı

As evident from Eq. 10.6, the chemical potential i is fundamental to

the formulation of criteria for phase equilibria. This is true as well for

chemical reaction equilibria. However, the chemical potential exhibits

certain unfortune characteristics which discourage its use in the

solution of practical problems.

The Gibbs energy, and hence i, is defined in relation to the internal

energy and entropy, both primitive quantities for which absolute

values are unknown. As aresult, we have no unequivocal absolute

values for the chemical potential.

Moreover, Eq. 10.28 shows that for an ideal gas mixture i approaches

negative infinitive when either P or xi aproaches zero. This obsevation

is not limited to ideal gases, but is true for any gas.

While these characteristics do not preclude the use of chemical

potential, the application of equilibrium criteria is facilitated by

introduction of thr fugacity, a quantity that takes the place of i but

which does not exhibit its less desirable characteristics.



The origin of the fugacity concept resides in Eq. 10.27, an 

equation valid only for pure species i in the ideal-gas state. For a 

real fluid, we write an analogous equation: 

 

 

  iii flnRTTG       10.30 

 

in which pressure P is replaced by a new property fi, which has 

units of pressure. This equation serves as a partial defination of 

fi, which is called the fugacity of pure species i.  

 

Subsraction of Eq. 10.27 from Eq. 10.30, both written for the 

same temperature and pressure, gives 
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According to the defination of Eq. 6.39, R
i

ig
ii GGG  is the 

residual Gibbs enegy. The dimensionless ratio fi/P is a new 

property called the fugacity coefficient and given the symbol i. 

Thus 

P

fi
i           10.32 

 

We now complate the defination of fugacity by setting the ideal-

gas state fugacity of pure species i equal to its pressure: 

 

Pf ig
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Thus for the special case of an ideal gas, 1  ,0G i
R
i   , and Eq. 

10.27 is recoved from Eq 10.30. 

 

 

 



Because of the equality of fugacities of saturated liquid and 

vapour, the calculation of fugacities for species i as a 

compressed liquid is don in two steps. First, one calculates the 

fugacity coefficient of saturated vapour sat
i

v
i    by an integrated 

form of Eq. 10.34, evaluated for sat
iPP  . Then by Eqs. 10.38 and  

10. 39 
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The second step is the evaluation of the change in fugacity of 

the liquid with an increase in pressure above sat
iP . The required 

equation follows directly from Eq. 10.30 in combination with 

Eq. 6.10. For the isothermal change of state ffrom saturated 

liquid to compressed liquid at pressure P, Eq. 6.10 may be 

integrated to give  
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Since Vi , the liquid-phase molar volume, is very weak function 

of P at temperatures well below Tc, an excellent approximation 

is often obtained when evaluation of the integral is baseb on the 

assumption that Vi is constant at the value for saturated liquid, 
l
iV : 
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Substituting 
sat
i

sat
i

sat
i Pf    and solving for fi gives 
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The exponential is known as the Poynting factor (John Henry 

Poynting (1852-1914), British physicist). 
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10.6 Fugacity and Fugacity Coefficient for Species in 

Solution  

        (Çözelti Bileşenlerinin Fügasite ve Fügasite Katsayıları) 

 

The defination of the fugacity of a species in solution is parallel 

to the defination the pure-species fugacity. We simply write for 

species i in a mixture of real gases or in a solution of liquids an 

equation analogous to the ideal-gas expression, Eq. 10.28 

  iii f̂lnRTT        10.42 

 

where if̂  is the fugacity of species i in solution, replacing the 

product xiP. Since it is not a partial property, we identfy it by a 

circumflex rather than an overbar. 

 


