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CHAPTER 11 

Solution Thermodynamics: Applications 

(Çözelti Termodinamiği: Uygulamalar) 

 
All the fundamental equations and necessary definitions of solution thermodynamics 

are given in the preceding chapter. In this chapter we examine what can be learned 

from experiment.  



 

11.1 (Liquid-Phase Properties from VLE Data) VLE Verisinden Sıvı-

Faz Özellikleri  
 

Fugacity (Fügasite) 

 

Figure 11.1 shows a vessel in which a vapour mixture and a liquid solution coexist in 

vapour/liquid equilibrium. Temperature T and pressure P are uniform throughout the 

vessel, and can be measured with appropriate instruments. Samples of the vapour and 

liquid phases may be withdrawn for analysis, and this provides experimental values 

for the mole fractions in the vapour (yi) and mole fractions in the liquid (xi). For 

species i in the vapour mixture, Eq. 10.47 ( Pxf iii ̂ˆ  ) is written 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.1 Schematic representation of VLE 
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Pˆyf̂ ii
v
i   

 

For vapour/liquid equilibrium Eq. 10.44 requires that l
i

v
i f̂f̂   for each species. 

Therefore 

 

Pˆyf̂ ii
l
i   

 

We could calculate values of i̂  by Eq. 10.60, but for low pressure VLE (up to at least 

1 bar) vapour phases usually approximate ideal gases, for which 1ˆ
i  . This 

assumption introduces little error, and reduces the preceding equation to 

 

Pyf̂ i
l
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Thus, the fugacity of species i in the liquid phase is given to a good approximation by 

the partial pressure of species i in the vapour phase. In the limit where 1yx ii  , the 

total pressure equals the vapour pressure of pure species i, and sat
i

v
i

l
i Pf̂f̂  . 

 

In Table 11.1 the first three columns contain a set of experimental P-x1-y1 data for the 

methyl ethyl ketone (1) / toluene (2) system at 50
o
C. Values of the liquid phase 

fugacities are found from 

 

Pyf̂ 11     and Pyf̂ 22   

 

where superscript “l” has for simplicity been dropped. These values are shown in 

columns 4 and 5 of Table 11.1, are plotted in Figure 11.2 as the solid lines. The 

straight dashed line represents Eq. 10.84, the Lewis/Randall rule, which expresses the 

composition dependency of the constituent fugacities in an ideal solution: 

  

ii
id
i fxf̂           10.84 

 

For a binary, system (ketone(1)/toluene (2), values of the liquid phase fugacities 

are found from



Activity Coefficient (Aktiflik Katsayısı) 

 
The lower dashed line in Fig. 11.3 again represents the Lewis/Randall rule, 

characteristic of ideal-solution behaviour. It provides the simplest possible model for 

the composition dependency of if̂ , representing a standard to which actual behaviour 

may be compared. Indeed, the activity coefficient formalises this comparison: 
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Thus the activity coefficient of a species in solution in simply the ratio of its actual 

fugacity to the value given by the Lewis/Randall rule at the same T, P, and 

composition. For calculational purposes we substitute for both if̂ and id
if̂ to get  
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The activity coefficient is given as following:



This simple equation is adequate to our present purpose, allowing easy calculation of 

activity coefficients from experimental low pressure VLE data. Values found by this 

equation are given in the last two columns of Table 11.1. 

 

We note in Fig. 11.3 that the solid line representing the actual composition 

dependency of if̂  becomes tangent to the Lewis/Randall line at xi =1. This is a 

consequence of the Lewis/Randall equation, as will be shown presently. We also note 

that in the other limit if̂ becomes zero at xi=0. Thus the ratio ii x/f̂ is indeterminate in 

this limit, and application of l’Hopital’s rule yields (the limit, as x approaches zero..) 
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