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CHAPTER 14 

 

TOPICS IN PHASE EQUILIBRIUM (Faz Dengesi) 

 

Consider a closed system containing an arbitrary number of species and comprised of an 

arbitrary number of phases in which the temperature and pressure are uniform (though not 

necessarily constant). The system is assumed to be initially in a nonequilibrium state with 

respect to mass transfer between phases and chemical reaction. Any changes which occur in 

the system are necessarily irreversible, and they take the system ever closer to an equilibrium 

state. We may imagine that the system is placed in surroundings such that the system and 

surroundings are always in thermal and mechanical equilibrium. Heat exchange and 

expansion work are then accomplished reversibly. Under these circumstances the entropy 

change of the surroundings is given by 
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The final term applies to the system, for which the heat transfer dQ has a sign opposite to that 

of dQsurr, and the temperature of the system T replaces Tsurr, because both must have the same 

value for reversible heat transfer. The second law requires that 

 

 dS + dSsurr ≥ 0 (14.1) 

 

where S
t
 is the total entropy of the system. Combination of these expressions yields, upon 

rearrangement: 

 

 dQ ≤ T dS
t
 

 

Application of the first law provides 
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or 
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Combining this equation with Eq. (14.1) gives 
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or 
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t
 – T dS

t
 ≤ 0 (14.2) 

 

Since this relation involves properties only, it must be satisfied for changes in state of any 

closed system of uniform T and P, without restriction to the conditions of mechanical and 

thermal reversibility assumed in its derivation. The inequality applies to every incremental 

change of the system between nonequilibrium states, and it dictates the direction of change 

that leads toward equilibrium. The equality holds for changes between equilibrium states 

(reversible processes). Thus Eq. (6.1) is just a special case of Eq. (14.2). 



or 

 

 d(U
t
 + PV

t
 – TS

t
)T, P ≤ 0 

 

From the definition of the Gibbs energy [Eq. (6.3)], 
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Therefore 

 

 (dGt)T, P ≤ 0 (14.3) 

 

Of the possible specializations of Eq. (14.2), this is the most useful, because T and P, which 

are easily measured, are more convenient as constants than are other pairs of variables, such 

as U
t
 and V

t
. 



Equation (14.8) indicates that all irreversible processes occurring at constant T and P proceed 

in such a direction as to cause a decrease in the Gibbs energy of the system. Therefore: 

 

The equilibrium state of a closed system is that state for which the total Gibbs energy is a 

minimum with respect to all possible changes at the given T and P. 

 

This criterion of equilibrium provides a general method for determination of equilibrium 

states. One writes an expression for G
t
 as a function of the numbers of moles (mole numbers) 

of the species in the several phases, and then finds the set of values for the mole numbers that 

minimizes G
t
, subject to the constraints of mass conservation. This procedure can be applied 

to problems of phase, chemical-reaction, or combined phase and chemical-reaction 

equilibrium; it is most useful for complex equilibrium problems, and is illustrated for 

chemical-reaction equilibrium in Sec. 15.9. 

At the equilibrium state differential variations can occur in the system at constant T and P 

without producing any change in G
t
. This is the meaning of the equality in Eq. (14.3). Thus 

another form of this criterion of equilibrium is 

 

 (dG
t
)T, P = 0 (14.4) 

 



Heat of Adsorption (Adsorpsiyon Isısı) 

 

The Clapeyron equation, derived in Sec. 6.3 for the latent heat of phase transition of 

pure chemical species, is also applicable to pure-gas adsorption equilibrium. Here, 

however, the two-phase equilibrium pressure depends not only on temperature, but on 

surface coverage or the amount adsorbed. Thus the analogous equation for adsorption is 

written 
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where subscript n signifies that the derivative is taken at constant amount adsorbed. 

Superscript av denotes a property change of desorption, i.e., the difference between the 

vapor-phase and the adsorbed-phase property. The quantity avav HHH  is defined 

as the isosteric heat of adsorption, and is usually a positive quantity.
15

 The heat of 

adsorption is a useful indication of the strength of the forces binding adsorbed molecules 

to the surface of the adsorbent, and its magnitude can therefore often be used to 

distinguish between physical adsorption and chemisorption. 



The dependence of heats of adsorption on surface coverage has its basis in the energetic 

heterogeneity of most solid surfaces. The first sites on a surface to be occupied are those 

which attract adsorbate molecules most strongly and with the greatest release of energy. 

Thus the heat of adsorption decreases with surface coverage. Once all sites are occupied 

and multilayer adsorption begins, the dominant forces become those between adsorbate 

molecules, and for subcritical species the decreasing heat of adsorption approaches the 

heat of vaporization. 



Assumed in the derivation of the Langmuir isotherm is the energetic equivalence of all 

adsorption sites, implying that the heat of adsorption is independent of surface coverage. 

This explains in part the inability of the Langmuir isotherm to provide a close fit to most 

experimental data over a wide range of surface coverage. The Freundlich isotherm, Eq. 

(14.55), implies a logarithmic decrease in the heat of adsorption with surface coverage. 

As in the development of the Clausius/Clapeyron equation (Example 6.4), if for low 

pressures one assumes that the gas phase is ideal and that the adsorbate is of negligible 

volume compared with the gas-phase volume, Eq. (14.56) becomes 
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Application of this equation requires the measurement of isotherms, such as the one at 

50
0
C in Fig. 14.16, at several temperatures. Cross plotting yields sets of P vs. T relations 

at constant n, from which values for the partial derivative of Eq. (14.57) can be 

obtained. For chemisorption, ΔH
av

 values usually range from 60 to 170 kJ mol
-1

. For 

physical adsorption, they are smaller. For example, measured values at very low 

coverage for the physical adsorption of nitrogen and n-butane on 5A zeolite are 18.0 and 

43.1 kJ mol
-1

, respectively. 

 


