<u>Textbook</u>: J. M. Smith, H. C. Van Ness, M.M. Abbott, Introduction to Chemical Engineering Thermodynamics, Seventh Edition, McGraw-Hill International Editions, 2005.

## **Supplementary References**

Stanley I. Sandler, **Chemical and Engineering Thermodynamics,** Third edition John Wiley & Sons Inc, 1998.

J. Richard Elliott, Carl T. Lira, **Introductory Chemical Engineering Thermodynamics,** 2nd edition Prentice Hall International Series in the Physical and Chemical Engineering Sciences, 1999.

## **Application of Equilibrium Criteria to Chemical Reactions**

it is shown that the total Gibbs energy of a closed system at constant T and P must decrease during an irreversible process and that the condition for equilibrium is reached when  $G^t$  attains its minimum value. At this equilibrium state,

 $(\mathbf{d}\mathbf{G}^{\mathsf{t}})_{\mathsf{T},\mathsf{P}}=\mathbf{0}$ 

Thus if a mixture of chemical species is not in chemical equilibrium, any reaction that occurs at constant T and P must lead to a decrease in the total Gibbs energy of the system.

•



**Figure** : The total Gibbs energy in relation to the reaction coordinate.

Figure indicates the two distinctive features of the equilibrium state for given *T* and *P*: (1) The total Gibbs energy  $G^{t}$  is a minimum; (2) its differential is zero.

**Each of these may serve as a criterion of equilibrium.** Thus, we may write an expression for  $G^t$  as a function of  $\varepsilon$  and seek the value of  $\varepsilon$  which minimizes  $G^t$ , or we may differentiate the expression, equate it to zero, and solve for  $\varepsilon$ .

## The Standard Gibbs Energy Change and the Equilibrium Constant

Equation, the fundamental property relation for single-phase systems, provides an expression for the total differential of the Gibbs energy:

$$d(nG) = (nV)dP - (nS)dT + \sum_{i} \mu_{i}dn_{i}$$

If changes in the mole numbers  $n_i$  occur as the result of a single chemical reaction in a closed system, then by Eq. each  $dn_i$  may be replaced by the product  $v_i d\varepsilon$ . Equation, then becomes

$$d(nG) = (nV)dP - (nS)dT + \sum_{i} v_{i}\mu_{i}d\varepsilon$$

Since *nG* is a state function, the right-hand side of this equation is an exact differential expression; it follows that

$$\sum_{i} \nu_{i} \mu_{i} = \left[ \frac{\partial (nG)}{\partial \varepsilon} \right]_{T,P} = \left[ \frac{\partial (G^{t})}{\partial \varepsilon} \right]_{T,P}$$

The difference between these two equations is then

$$\mu_{i} - G_{i}^{o} = RT \ln \frac{\hat{f}_{i}}{f_{i}^{o}}$$

The ratio  $\hat{f}_i/f_i^{o}$  is called the *activity*  $\hat{a}_i$  of species *i* in solution. Thus by definition,

$$\hat{a}_i \equiv \frac{\hat{f}_i}{f_i^{o}}$$

## and the preceding equation becomes

 $\mu_{i} = G_{i}^{o} + RT \ln \hat{a}_{i}$ 

Combining : the equationsto eliminate  $\mu_i$  gives for the equilibriumstate of a chemical reaction

$$\sum_{i} v_i (G_i^o + RT \ln \hat{a}_i) = 0$$

or

$$\sum_{i} v_i G_i^o + RT \sum_{i} \ln(\hat{a}_i)^{v_i} = 0$$

or

$$\ln \prod_{i} (\hat{a}_{i})^{v_{i}} = \frac{-\sum_{i} v_{i} G_{i}^{o}}{RT}$$

where  $\prod_{i}$  signifies the product over all species *i*. In exponential form, Eq. becomes

$$\boxed{\prod_{i} (\hat{a}_{i})^{v_{i}} = \exp \frac{-\sum_{i} v_{i} G_{i}^{o}}{RT} \equiv K}$$

$$-RT\ln K = \sum_{i} v_{i}G_{i}^{\circ} \equiv \Delta G^{\circ}$$

The final term  $\Delta G^{\circ}$  is the conventional way of representing the quantity  $\sum_{i} v_{i} G_{i}^{\circ}$ . It is called the *standard Gibbs energy change of reaction*.

The standard states are arbitrary, but must always be at the equilibrium temperature *T*. The standard states selected need not be the same for all species taking part in a reaction.

However, for a *particular* species the standard state represented by  $G_i^{\circ}$  must be the same state as for the fugacity  $f_i^{\circ}$  upon which the activity  $\hat{a}_i$  is based.

The function  $\sum v_i G_i^\circ \equiv \Delta G^\circ$  in Eq. is the difference between the Gibbs energies of the products and reactants (weighted by their stoichiometric coefficients) when each is in its standard state as a pure substance at the system temperature and at a fixed pressure.