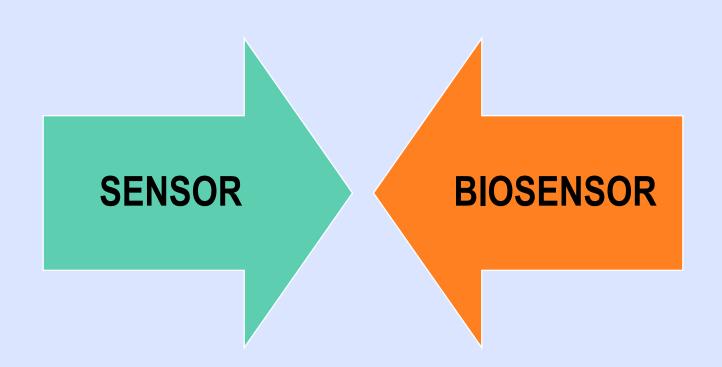
BIOTECHNOLOGY and BIOPHARMACEUTICS


Assoc. Prof. Fadime KIRAN

Therapeutic and Clinical Applications of Biopharmaceuticals

BIOSENSORS

What is a Biosensor?

Definition of the Term "Biosensor"

device incorporating a biological sensing element connected to a transducer

"A self-contained integrated device which is capable of providing specific quantitative or semi-quantitative analytical information using a biological recognition element which is in direct spatial contact with a transducer element." (IUPAC)

• **Analyte**: a substance of interest that needs detection

• Bioreceptor: a molecule that specifically recognizes the analyte

• **Bio-recognition**: the process of signal generation (in form of light, pH, etc.)

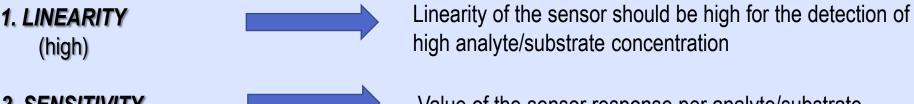
upon interaction of the bioreceptor with the analyte.

Main Components of the Biosensors	
-----------------------------------	--

signal

• *Transducer*: its role is convert the bio-recognition event into a measurable

• *Electronics*: this part processes the transducer signal & prepare it for


display

Main Components of the Biosensors

• **Display**: the output signal on the display can be numeric, graphic, image or

tabular depending on the requirement of the end user.

Basic Characteristics of Biosensors

2. SENSITIVITY Value of the sensor response per analyte/substrate concentration

3. SELECTIVITY

(high)

Chemicals interference have to be minimized for obtaining the correct result

4. RESPONSE TIME Time necessary for having 95% of the response (short)

The ability of the biosensor to generate identical responses for a duplicated experimental set-up

