Copyright statement:

These lecture notes have been prepared for Ankara University undergraduate students and are not used for commercial purposes. The texts, formulas and figures used in the preparation of these notes are mostly taken from the book "Physics For Scientists And Engineers (Serway-Jewett)". In addition, many figures and animations from various internet sources were used. Many thanks to everyone who contributed to the preparation of these items.

PEN205

MODERN PHYSICS

Relativity - II

Prof. Dr. H. Gül YAǦLIOĞLU - Dr. Öğr. Üyesi Çağıl KADEROĞLU

Time Dilation $\rightarrow \quad \Delta t>\Delta t_{p}$

The time interval $\Delta \mathrm{t}$ measured by an observer moving with respect to a clock is longer than the time interval Δt_{p} measured by an observer at rest with respect to the clock.

(a) clock is moving
(b)

Approximate Values for γ
at Various Speeds

$\boldsymbol{v} / \boldsymbol{c}$	γ
0.0010	1.0000005
0.010	1.00005
0.10	1.005
0.20	1.021
0.30	1.048
0.40	1.091
0.50	1.155
0.60	1.250
0.70	1.400
0.80	1.667
0.90	2.294
0.92	2.552
0.94	2.931
0.96	3.571
0.98	5.025
0.99	7.089
0.995	10.01
0.999	22.37

Time dilation is not an everyday issue

$$
\mathrm{v} / \mathrm{c}=0.1 \rightarrow \gamma=0.5 \%
$$

- If a clock is moving with respect to you, the time interval between ticks of the moving clock is observed to be longer than the time interval between ticks of an identical clock in your reference frame.
\rightarrow Thus, it is often said that a moving clock is measured to run more slowly than a clock in your reference frame by a factor .
-We can generalize this result by stating that all physical processes, including chemical and biological ones, are measured to slow down when those processes occur in a frame moving with respect to the observer.
\rightarrow For example, the heartbeat of an astronaut moving through space would keep time with a clock inside the spacecraft. Both the astronaut's clock and heartbeat would be measured to slow down according to an observer on Earth comparing time intervals with his own clock.

$$
\text { What happens if } \mathrm{v} \rightarrow c
$$

$$
\Delta t=\frac{\Delta t_{p}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\gamma \Delta t_{p}
$$

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad \longrightarrow \infty \quad \Delta \tau \rightarrow \infty
$$

Experimental Verification of Time Dilation

An experiment reported by Hafele and Keating provided direct evidence of time dilation (1971).
Time intervals measured with four cesium atomic clocks in jet flight were compared with time intervals measured by Earth-based reference atomic clocks.

Considered factors;

- periods of speeding up and slowing down relative to the Earth
- variations in direction of travel,
- gravitational field experienced by the flying clocks and the Earth-based clock

Result \rightarrow Relative to the atomic time scale of the U.S. Naval Observatory, the flying clocks lost $59 \pm 10 \mathrm{~ns}$ during the eastward trip and gained 273 ± 7 ns during the westward trip. . . .

The Twin Paradox

The Set-up

- Mary and Frank are twins.
- Mary, an astronaut, leaves on a trip many lightyears (ly) from the Earth at great speed and returns; Frank decides to remain safely on Earth.

The Problem

-Frank knows that Mary’s clocks measuring her age must run slow, so she will return younger than he.
-However, Mary (who also knows about time dilation) claims that Frank is also moving relative to her, and so his clocks must run slow.

The Paradox

-Who, in fact, is younger upon Mary's return?

The Twin-Paradox Solution

-Frank's clock is in an inertial system during the entire trip.
-But Mary's clock is not.
-As long as Mary is traveling at constant speed away from Frank, both of them can argue that the other twin is aging less rapidly.
-But when Mary slows down to turn around, she is not in an inertial frame anymore. She returns in a completely different inertial frame.

-Mary's claim is no longer valid, because she doesn't remain in the same inertial system. Frank does, however, and Mary ages less than Frank.

2. Length Contraction:

The measured distance between two points also depends on the frame of reference

When both endpoints of an object (at rest in a given frame) are measured in that frame, the resulting length is called the Proper Length ($L p$).

We'll find that the proper length is the largest length observed.

Observers in motion will see a contracted object. This is called length contraction.

Lets consider a spacecraft traveling with a speed v from one star to another.

Note: length contraction takes place only along the direction of motion.

Observer in a spacecraft measures time interval as Δt_{p}

$$
\Delta t_{p}=\Delta t / \gamma
$$

distance between stars as L :

$$
L=v \Delta t_{p}=v \frac{\Delta t}{\gamma}
$$

$$
L=\frac{L_{p}}{\gamma}=L_{p} \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

$$
L=\frac{L_{p}}{\gamma}=L_{p} \sqrt{1-\frac{v^{2}}{c^{2}}} \rightarrow \text { less than unity } \quad \begin{array}{r}
\text { Remember that; } \\
L
\end{array} \rightarrow \text { measured by the observer in spacecraft } \quad \begin{aligned}
& L_{p} \rightarrow \text { measured by the observer on Earth }
\end{aligned}
$$

If an object has a proper length L_{p} when it is measured by an observer at rest with respect to the object, then when it moves with speed v in a direction parallel to its length, its length L is measured to be shorter

The proper length \rightarrow measured by an observer for whom the end points of the length remain fixed in space.
The proper time interval \rightarrow measured by someone for whom the two events take place at the same position in space.

L_{p}	L
Δt	Δt_{p}

$$
L<L_{p}
$$

$$
\Delta t>\Delta t_{p}
$$

Without relativistic considerations, muons created in the atmosphere and traveling downward with a speed of 0.99 c travel only about $6.6 \times 10^{2} \mathrm{~m}$ before decaying with an average lifetime of $2.2 \mu \mathrm{~s}$. Thus, very few muons reach the surface of the Earth.

For observer travelling with muons:

- Measures proper time
- Measures the length of mountain shorter than its proper length

Length contraction
No time dilation

With relativistic considerations, the muon's lifetime is dilated according to an observer on Earth. As a result, according to this observer, the muon can travel about $4.8 \times 10^{3} \mathrm{~m}$ before decaying. This results in many of them arriving at the surface.

For observer at rest on earth:

- Measures longer time interval
- Measures the length of mountain as proper length

No length contraction
Time dilation

The Lorentz Transformation Equations

The Galilean transformation is not valid when v approaches the speed of light.
Lorentz transformation equations $\rightarrow v \leq 0<c$

Events occur at points P and Q and are observed by an observer at rest in the S frame and another in the $S^{\prime \prime}$ frame, which is moving to the right with a speed v.

The equations that are valid for all speeds and enable us to transform coordinates from S to S^{\prime} are the Lorentz transformation equations:

$$
\begin{aligned}
& x^{\prime}= \frac{x-\mathrm{v} t}{\sqrt{1-\mathrm{v}^{2} / c^{2}}} \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& t^{\prime}= \frac{t-\mathrm{v} x / c^{2}}{\sqrt{1-\mathrm{v}^{2} / c^{2}}}
\end{aligned}
$$

$$
\begin{gathered}
x=\frac{x^{\prime}+\mathrm{v} t^{\prime}}{\sqrt{1-\mathrm{v}^{2} / c^{2}}} \\
y=y^{\prime} \\
z=z^{\prime} \\
t=\frac{t^{\prime}+\mathrm{v} x^{\prime} / c^{2}}{\sqrt{1-\mathrm{v}^{2} / c^{2}}}
\end{gathered}
$$

$$
\begin{array}{lllll}
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} & x^{\prime}=\gamma(x-v t) \quad y^{\prime}=y \quad z^{\prime}=z \quad t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right) \quad \quad \mathrm{S} \rightarrow \mathrm{~S}^{\prime} \text { equations } \\
& x=\gamma\left(x^{\prime}+v t^{\prime}\right) \quad y^{2}=y^{\prime} \quad z^{2}=z^{\prime} \quad t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right) \quad \mathrm{S}^{\prime} \rightarrow \text { S equations }
\end{array}
$$

If $v \ll c \rightarrow \gamma=1$ so, Lorentz equations transform to Galilean equations;

difference in coordinates between two events or the time interval between two events as seen by observers O and O^{\prime};

$$
\left.\begin{array}{l}
\Delta x^{\prime}=\gamma(\Delta x-v \Delta t) \\
\Delta t^{\prime}=\gamma\left(\Delta t-\frac{v}{c^{2}} \Delta x\right)
\end{array}\right\} \mathrm{S} \rightarrow \mathrm{~S}^{\prime}
$$

$$
\left.\begin{array}{l}
\Delta x=\gamma\left(\Delta x^{\prime}+v \Delta t^{\prime}\right) \\
\Delta t=\gamma\left(\Delta t^{\prime}+\frac{v}{c^{2}} \Delta x^{\prime}\right)
\end{array}\right) \mathrm{S}^{\prime} \rightarrow \mathrm{S}
$$

Suppose two observers in relative motion with respect to each other are both observing the motion of an object.

Previously, we defined an event as occurring at an instant of time.
Now, we wish to interpret the "event" as the motion of the object.
an object has a velocity component $\mathrm{u}_{\mathrm{x}}^{\prime}$ measured in the S^{\prime} frame $\rightarrow \quad u_{x}^{\prime}=\frac{d x^{\prime}}{d t^{\prime}}$

$$
\begin{aligned}
& d x^{\prime}=\gamma(d x-v d t) \\
& d t^{\prime}=\gamma\left(d t-\frac{v}{c^{2}} d x\right) \\
& \rightarrow \text { We have these equations from Lorentz transformation eq. } \\
& u_{x}^{\prime}=\frac{d x^{\prime}}{d t^{\prime}}=\frac{d x-v d t}{d t-\frac{v}{c^{2}} d x}=\frac{\frac{d x}{d t}-v}{1-\frac{v}{c^{2}} \frac{d x}{d t}} \xrightarrow{\stackrel{\uparrow}{\mathrm{u}_{\mathrm{x}}}=\mathrm{dx} / \mathrm{dt}} \quad u_{x}^{\prime}=\frac{u_{x}-v}{1-\frac{u_{x} v}{c^{2}}}
\end{aligned}
$$

$$
u_{y}^{\prime}=\frac{u_{y}}{\gamma\left(1-\frac{u_{x} v}{c^{2}}\right)} \quad \text { and } \quad u_{z}^{\prime}=\frac{u_{z}}{\gamma\left(1-\frac{u_{x} v}{c^{2}}\right)}
$$

$$
u_{x}^{\prime}=\frac{u_{x}-v}{1-\frac{u_{x} v}{c^{2}}}
$$

$$
v \ll c \rightarrow u_{x}^{\prime} \approx u_{x}-v \quad \rightarrow \text { Galilean transformation equations }
$$

$$
u_{x}=c \quad \rightarrow \quad u_{x}^{\prime}=\frac{c-v}{1-\frac{c v}{c^{2}}}=\frac{c\left(1-\frac{v}{c}\right)}{1-\frac{v}{c}}=c
$$

A speed measured as c by an observer in S is also measured as c by an observer in S^{\prime}. It is independent of the relative motion of S and S^{\prime}

Einstein \rightarrow the speed of light must be c relative to all inertial reference frames

Relativistic Linear Momentum and the Relativistic Form of Newton's Laws

Because the laws of physics must remain unchanged under the Lorentz transformation, we must generalize Newton's laws and the definitions of linear momentum and energy to conform to the Lorentz transformation equations and the principle of relativity.

$$
\vec{p}=\frac{m_{0} \vec{u}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}=\gamma m_{0} \vec{u}
$$

u : the velocity of the particle m : the mass of the particle

The relativistic force F acting on a particle whose linear momentum is $\mathbf{p} \rightarrow \mathbf{F} \equiv \frac{d \mathbf{p}}{d t}$

$$
K=\frac{m c^{2}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}-m c^{2}=\gamma m c^{2}-m c^{2}=(\gamma-1) m c^{2}
$$

$$
K=m c^{2}(\gamma-1) \quad u / c \ll 1 \longrightarrow K=\frac{1}{2} m u^{2}
$$

$$
K=m c^{2}(\gamma-1)
$$

The constant term mc^{2} which is independent of the speed of the particle, is called the rest energy E_{R} of the particle:

$$
E_{R}=m c^{2}
$$

The term $\gamma \mathrm{mc}^{2}$ depends on the particle speed, and defined as the total energy E

$$
E=\frac{m c^{2}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}=\gamma m c^{2}
$$

```
Total energy = kinetic energy + rest energy
```

$$
E=K+m c^{2} \quad \rightarrow \text { mass is a form of energy }
$$

In many situations, the linear momentum or energy of a particle is measured rather than its speed.

$$
\begin{gathered}
E=\gamma m c^{2} \quad p=\gamma m u \\
E^{2}=p^{2} c^{2}+\left(m c^{2}\right)^{2}
\end{gathered}
$$

If particle at rest, $\mathrm{p}=0 \rightarrow E_{R}=m c^{2}$

$$
\text { If } \mathrm{m}=0 \rightarrow E=p c
$$

the mass of an electron is $9.11 \times 10^{-31} \mathrm{~kg}$. Hence, the rest energy of the electron is

$$
1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
$$

$$
\begin{aligned}
m_{e} c^{2} & =\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=8.20 \times 10^{-14} \mathrm{~J} \\
& =\left(8.20 \times 10^{-14} \mathrm{~J}\right)\left(1 \mathrm{eV} / 1.60 \times 10^{-19} \mathrm{~J}\right)=0.511 \mathrm{MeV}
\end{aligned}
$$

The Electron Volt (eV)

The work done in accelerating a charge through a potential difference is given by $W=q V$.

For a proton, with the charge $e=1.602 \times 10^{-19} \mathrm{C}$ and a potential difference of 1 V , the work done is:

$$
W=\left(1.602 \times 10^{-19} \mathrm{C}\right)(1 \mathrm{~V})=1.602 \times 10^{-19} \mathrm{~J}
$$

The work done to accelerate the proton across a potential difference of 1 V could also be written as:

$$
W=(1 \mathrm{e})(1 \mathrm{~V})=1 \mathrm{eV}
$$

Thus eV, pronounced "electron volt," is also a unit of energy. It's related to the SI (Système International) unit joule by:

$$
1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}
$$

