
8.5 EXTREMA OF FUNCTIONS OF SEVERAL VARI-
ABLES

In this section we are going to extend one of the more important ideas from
Analysis I into functions of two variables. We are going to start looking at
trying to find minimums and maximums of functions. This in fact will be the
topic of the following two sections as well.

Definition 142 a A function f(x, y) has a local (relative) minimum at the
point (a, b) if f(x, y) ≥ f(a, b) for all points (x, y) in some region around
(a, b) .

b A function f(x, y) has a local (relative) maximum at the point (c, d) if f(x, y) ≤
f(c, d) for all points (x, y) in some region around (c, d) .

Local maxima and minima are also called local extrama.

Note
that this definition does not say that a local minimum is the smallest value that
the function will ever take. It only says that in some region around the point
(a, b) the function will always be larger than f(a, b) . Outside of that region it is
completely possible for the function to be smaller. Likewise, a local maximum
only says that around (c, d) the function will always be smaller than f(a, b) .
Again, outside of the region it is completely possible that the function will be
larger. Next, we need to extend the idea of critical points up to functions of two
variables. Recall that a critical point of the function f(x) was a number x = c
so that either f ′(c) = 0 or f ′(c) doesn’t exist. We have a similar definition for
critical points of functions of two variables.

Theorem 143 If f (x, y) has a local extrama at an interior point (a, b) of its
domain and if the first partial derivatives exist, then fx (a, b) = 0 and fy (a, b) =
0

From this theorem we conclude that the only places a function f (x, y) can
have an extrama value if;
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1. Interior points where fx =fy = 0

2. Interior points where at least one of the partial derivatives fx or fy does
not exist

3. Boundary points of the function f .

Definition 144 The point (a, b) is a critical point (or a stationary point) of
f(x, y) provided one of the following is true,

a ∇f(a, b) = 0 (this is equivalent to saying that fx (a, b) = 0 and fy (a, b) = 0),

b fx (a, b) and/or fy (a, b) doesn’t exist.

Theorem 145 Suppose that (a, b) is a critical point of f(x, y) and that the
second order partial derivatives are continuous in some region that contains
(a, b) . Next define,

D = D (a, b) = fxx (a, b) fyy (a, b)− [fx y (a, b)]
2

We then have the following classifications of the critical point.

1. D > 0 and fxx(a, b) > 0 then there is a local minimum at (a, b) .

2. D > 0 and fxx(a, b) < 0 then there is a local maximum at (a, b) .

3. If D < 0 then the point (a, b) is a saddle point.

4. If D = 0 then the point (a, b) may be a local minimum, local maximum
or a saddle point. Other techniques would need to be used to classify the
critical point.

Remark 146 Note that if D > 0 then both fxx(a, b) and fyy(a, b) will have
the same sign and so in the first two cases above we could just as easily replace
fxx(a, b) with fyy(a, b) .

Example 147 Find and classify all the critical points of f(x, y) = 4 + x3 +
y3 − 3xy.

Solution 148 We first need all the first order (to find the critical points) and
second order (to classify the critical points) partial derivatives so let’s get those.

fx = 3x2 − 3y and fy = 3y2 − 3x

fxx = 6x , fyy = 6y

fxy = −3

Let’s first find the critical points. Critical points will be solutions to the system
of equations,

fx = 3x2 − 3y = 0

fy = 3y2 − 3x = 0
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We can solve the first equation for y as follows

3x2 − 3y = 0⇒ y = x2

Plugging this into the second equation gives,

3(x2)2 − 3x = 3x(x3 − 1) = 0

From this we can see that we must have x = 0 or x = 1 . Now use the fact that
y = x2 to get the critical points.

x = 0, y = 0 ⇒ (0, 0)
x = 1, y = 1 ⇒ (1, 1)

So, we get two critical points. All we need to do now is classify them

D (x, y) = fxx (x, y) fyy (x, y)− [fx y (x, y)]
2

= (6x) (6y)− (−3)
2

36xy − 9

(0, 0)
D (0, 0) = −9 < 0

So, for (0, 0) D is negative and so this must be a saddle point.
(1, 1)

D (1, 1) = 36− 9 = 27 > 0 and fxx(1, 1) = 6 > 0

For (1, 1) D is positive and fxx is positive and so we must have a local minimum.

8.5.1 Absolute Extrema

In this section we want to optimize a function, that is identify the absolute
minimum and/or the absolute maximum of the function, on a given region in
R2. Absulute maximum value is the biggest value that the function f attains
on a region. Absolute minimum value is the minimal (smalest) value that the
function f attains on o region.

Definition 149 We call f(a, b) the absolute maximum of f on the region R
if f(a, b) ≥ f(x, y) for all (x, y) ∈ R. Similarly, f(a, b) is called the absolute
minimum of f on R if f(a, b) ≤ f(x, y) for all (x, y) ∈ R. In either case, f(a, b)
is called an absolute extremum of f .

Theorem 150 If f(x, y) is continuous in some closed, bounded set D in R2
then there are points in D , (x1, y1) and (x2, y2) so that f(x1, y1) is the absolute
maximum and f(x2, y2) is the absolute minimum of the function in D .

Finding Absolute Extrema

1. Find all the critical points of the function that lie in the region D and
determine the function value at each of these points.
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2. Find all extrema of the function on the boundary.

3. The largest and smallest values found in the first two steps are the absolute
minimum and the absolute maximum of the function.

Example 151 Find the absolute minimum and absolute maximum of f(x, y) =
x2 + 4y2 − 2x2y + 4 on the rectangle given by −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1

.

Solution 152 The boundary of this rectangle is given by the following condi-
tions.

Solution 153 right side :

right side : x = 1, −1 ≤ y ≤ 1

left side :x = −1, −1 ≤ y ≤ 1

upper side :y = 1, −1 ≤ x ≤ 1

lower side :y = −1, −1 ≤ x ≤ 1

fx = 2x− 4xy

fy = 8y − 2x2

To find the critical points we will need to solve the system

2x− 4xy = 0

8y − 2x2 = 0

y =
x2

4

Plugging this into the first equation gives us,

x(2− x2) = 0

x = 0, x = ±
√

2
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Now, recall that we only want critical points in the region that we’re given. That
means that we only want critical points for which −1 ≤ x ≤ 1 . The only value
of x that will satisfy this is the first one so we can ignore the last two for this
problem. Note however that a simple change to the boundary would include
these two so don’t forget to always check if the critical points are in the region
(or on the boundary since that can also happen). The single critical point, in
the region (and again, that’s important), is (0,0). We now need to get the value
of the function at the critical point.

f (0, 0) = 4

Eventually we will compare this to values of the function found in the next step
and take the largest and smallest as the absolute extrema of the function in the
rectangle. Now we have reached the long part of this problem. We need to find
the absolute extrema of the function along the boundary of the rectangle. What
this means is that we’re going to need to look at what the function is doing along
each of the sides of the rectangle listed above. Let’s first take a look at the right
side. As noted above the right side is defined by

x = 1, −1 ≤ y ≤ 1

g (y) = f (1, y) = 12 + 4y2 − 2
(
12
)
y + 4 = 5 + 4y2 − 2y

Now, finding the absolute extrema of f(x, y) along the right side will be equivalent
to finding the absolute extrema of g(y)in the range −1 ≤ y ≤ 1.

g
′
(y) = 8y − 2⇒ y =

1

4

Notice that, using the definition of g(y) these are also function values for f(x, y)

g (−1) = f (1,−1) = 11

g (1) = f (1, 1) = 7

g

(
1

4

)
= f

(
1,

1

4

)
=

19

4
= 4.75

We can now do the left side, upper side and lower side of the rectangle similarly.
The final step to this process is to collect up all the function values for f(x, y)
that we’ve computed in this problem. Here they are,

f (0, 0) = 4 f (1,−1) = 11 f (1, 1) = 7

f

(
1,

1

4

)
= 4.75 f (−1, 1) = 7 f (−1,−1) = 11

f

(
−1,

1

4

)
= 4.75 f (0, 1) = 8 f (0,−1) = 8

The absolute minimum is at (0, 0) since gives the smallest function value and
the absolute maximum occurs at (1,−1) and (−1,−1) since these two points give
the largest function value.
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