
8.5.2 Lagrange Multipliers

The method of Lagrange multipliers is a strategy for finding the local maxima
and minima of a function subject to equality constraints (i.e., subject to the
condition that one or more equations have to be satisfied exactly by the chosen
values of the variables). The basic idea is to convert a constrained problem into
a form such that the derivative test of an unconstrained problem can still be
applied.The Lagrange multiplier theorem roughly states that at any stationary
point of the function that also satisfies the equality constraints, the gradient
of the function at that point can be expressed as a linear combination of the
gradients of the constraints at that point, with the Lagrange multipliers act-
ing as coeffi cients. The great advantage of this method is that it allows the
optimization to be solved without explicit parameterization in terms of the con-
straints. As a result, the method of Lagrange multipliers is widely used to solve
challenging constrained optimization problems.
We want to optimize (i.e. find the minimum and maximum value of) a func-

tion, f(x, y, z) , subject to the constraint g(x, y, z) = k . Again, the constraint
may be the equation that describes the boundary of a region or it may not be.
Method of Lagrange Multipliers

1. Solve the following system of equations.

∇f (x, y, z) = λ ∇g (x, y, z)

g (x, y, z) = k

2. Plug in all solutions, (x, y, z) , from the first step into f(x, y, z) and identify
the minimum and maximum values, provided they exist and ∇g 6= 0 at
the point. The constant,λ is called the Lagrange Multiplier.

Notice that the system of equations from the method actually has four equa-
tions, we just wrote the system in a simpler form. To see this let’s take the first
equation and put in the definition of the gradient vector to see what we get.

〈fx, fy, fz〉 = λ 〈gx, gy, gz〉 = 〈λgx, λgy, λgz〉

In order for these two vectors to be equal the individual components must also
be equal. So, we actually have three equations here.

fx = λgx fy = λgy fz = λgz

These three equations along with the constraint, g(x, y, z) = c , give four equa-
tions with four unknowns x, y, z, and λ . As a final note we also need to be
careful with the fact that in some cases minimums and maximums won’t exist
even though the method will seem to imply that they do. In every problem we’ll
need to make sure that minimums and maximums will exist before we start the
problem.
It is somewhat easier to understand two variable problems, so we begin with

one as an example. Suppose the perimeter of a rectangle is to be 100 units.
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Find the rectangle with largest area. This is a fairly straightforward problem
from single variable calculus. We write down the two equations: A = xy,
P = 100 = 2x + 2y, solve the second of these for y (or x), substitute into
the first, and end up with a one-variable maximization problem. Let’s now
think of it differently: the equation A = xy defines a surface, and the equation
100 = 2x+ 2y defines a curve (a line, in this case) in the x− y plane.
The gradient of 2x + 2y is 〈2, 2〉, and the gradient of xy is 〈y, x〉. They are

parallel when 〈2, 2〉 = λ 〈y, x〉, that is, when 2 = λy and 2 = λx. We have
two equations in three unknowns, which typically results in many solutions (as
we expected). A third equation will reduce the number of solutions; the third
equation is the original constraint, 100 = 2x + 2y. So we have the following
system to solve:

2 = λy

2 = λx

100 = 2x+ 2y

In the first two equations, λ can’t be0, so we may divide by it to get x = y = 2
λ .

Substituting into the third equation we get

2
2

λ
+ 2

2

λ
= 100

8

100
= λ

so x = y = 25.

Example 154 Find the dimensions of the box with largest volume if the total
surface area is 64 cm2.

Solution 155 We first need to identify the function that we’re going to optimize
as well as the constraint. Let’s set the length of the box to be x , the width of the
box to be y and the height of the box to be z . Let’s also note that because we’re
dealing with the dimensions of a box it is safe to assume that x, y , and z are
all positive quantities. We want to find the largest volume and so the function
that we want to optimize is given by,

f(x, y, z) = xyz

Next, we know that the surface area of the box must be a constant 64. So this is
the constraint. The surface area of a box is simply the sum of the areas of each
of the sides so the constraint is given by,

2xy + 2xz + 2yz = 64⇒ xy + xz + yz = 32

Note that we divided the constraint by 2 to simplify the equation a little. Also,
we get the function g(x, y, z) from this.

g(x, y, z) = xy + xz + yz
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The function itself, f(x, y, z) = xyz will clearly have neither minimums or maxi-
mums unless we put some restrictions on the variables. The only real restriction
that we’ve got is that all the variables must be positive. This, of course, instantly
means that the function does have a minimum, zero, even though this is a silly
value as it also means we pretty much don’t have a box. It does however mean
that we know the minimum of f(x, y, z) does exist.
So, let’s now see if f(x, y, z) will have a maximum. Clearly, hopefully,f(x, y, z)
will not have a maximum if all the variables are allowed to increase without
bound. That however, can’t happen because of the constraint,

xy + xz + yz = 32

Here we’ve got the sum of three positive numbers (remember that we x , y ,
and z are positive because we are working with a box) and the sum must equal
32. So, if one of the variables gets very large, say x , then because each of the
products must be less than 32 both y and z must be very small to make sure
the first two terms are less than 32. So, there is no way for all the variables
to increase without bound and so it should make some sense that the function,
f(x, y, z) = xyz , will have a maximum. This is not an exact proof that f(x, y, z)
will have a maximum but it should help to visualize that f(x, y, z) should have
a maximum value as long as it is subject to the constraint. Here are the four
equations that we need to solve.

yz = λ(y + z)(fx = λgx) (1)

xz = λ(x+ z)(fy = λgy) (2)

xy = λ(x+ y)(fz = λgz) (3)

xy + xz + yz = 32(g(x, y, z) = 32) (4)

There are many ways to solve this system. We’ll solve it in the following way.
Let’s multiply equation (1) by x , equation (2 by y and equation (3) by z . This
gives,

xyz = λx(y + z) (5)

xyz = λy(x+ z (6)

xyz = λz(x+ y) (7)

Now notice that we can set equations (5) and (6) equal. Doing this gives,

λx(y + z) = λy(x+ z)

λ(xy + xz)− λ(yx+ yz) = 0

λ(xz − yz) = 0⇒ λ = 0 or xz = yz

This gave two possibilities. The first, λ = 0 is not possible since if this was the
case equation (1) would reduce to

yz = 0⇒ y = 0 or z = 0
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Since we are talking about the dimensions of a box neither of these are possible
so we can discount λ = 0 . This leaves the second possibility.

xz = yz

Since we know that z 6= 0 (again since we are talking about the dimensions of a
box) we can cancel the z from both sides. This gives,

x = y (8)

Next, let’s set equations (6) and (7) equal. Doing this gives,

λy(x+ z) = λz(x+ y)

λ(yx+ yz − zx− zy) = 0

λ(yx− zx) = 0⇒ λ = 0 or yx = zx

As already discussed we know that λ = 0 won’t work and so this leaves,

yx = zx

We can also say that x 6= 0 since we are dealing with the dimensions of a box
so we must have,

z = y (9)

Plugging equations (8) and (9) into equation (4) we get,

y2 + y2 + y2 = 3y2 = 32 y = ±
√

32

3
= ±3.266

However, we know that y must be positive since we are talking about the di-
mensions of a box. Therefore, the only solution that makes physical sense here
is

x = y = z = 3.266

So, it looks like we’ve got a cube. We should be a little careful here. Since
we’ve only got one solution we might be tempted to assume that these are the
dimensions that will give the largest volume. Anytime we get a single solution
we really need to verify that it is a maximum (or minimum if that is what we
are looking for). This is actually pretty simple to do. First, let’s note that the
volume at our solution above is,

V = f(

√
32

3
,

√
32

3
,

√
32

3
) = (

√
32

3
)3 = 34.8376

Now, we know that a maximum of f(x, y, z) will exist (“proved” that earlier in
the solution) and so to verify that that this really is a maximum all we need to
do if find another set of dimensions that satisfy our constraint and check the
volume. If the volume of this new set of dimensions is smaller that the volume
above then we know that our solution does give a maximum. If, on the other
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hand, the new set of dimensions give a larger volume we have a problem. We
only have a single solution and we know that a maximum exists and the method
should generate that maximum. So, in this case, the likely issue is that we will
have made a mistake somewhere and we’ll need to go back and find it. So, let’s
find a new set of dimensions for the box. The only thing we need to worry
about is that they will satisfy the constraint. Outside of that there aren’t other
constraints on the size of the dimensions. So, we can freely pick two values and
then use the constraint to determine the third value. Let’s choose x = y = 1 .
No reason for these values other than they are “easy” to work with. Plugging
these into the constraint gives,

1 + z + z = 32→ 2z = 31→ z =
31

2

So, this is a set of dimensions that satisfy the constraint and the volume for this
set of dimensions is,

V = f(1, 1,
31

2
) =

31

2
= 15.5 < 34.8376

So, the new dimensions give a smaller volume and so our solution above is, in
fact, the dimensions that will give a maximum volume of the box are

x = y = z = 3.266
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