
8.8 DOUBLE INTEGRALS

Definition 173 Let f (x, y) be a continuous function defined on a bounded re-
gion B in the xy−plane and let

P = {Bi : 1 ≤ i ≤ n}

be a partition of B by lines parallel to the coordinate axes, and define the norm
of P as ‖P‖ = max

1≤i≤n
di where

di = sup {d (x, y) : x, y ∈ Bi} ,

‖P‖ = max
1≤i≤n

{d (B1) , d (B2) , · · · , d (Bn)} .

For each 1 ≤ i ≤ n pick any point (xi, yi) ∈ Bi and form the following sum

n∑
i=1

f (xi, yi)∇Ai

where ∇Ai is the area of Bi. Such a sum is called an approximating sum or
Riemann sum. Roughly speaking the double integral∫∫

B

f (x, y) dA

of f over B is defined to be the limit

lim
‖P‖→0

n∑
i=1

f (xi, yi)∇Ai

In this case, we say that f is integrable on B.

Theorem 174 Suppose that f is integrable over the rectangle R = {(x, y)|a ≤
x ≤ b and c ≤ y ≤ d}. Then we can write the double integral of f over R as
either of the iterated integrals:

∫∫
R

f (x, y) dA =

b∫
a

d∫
c

f (x, y) dydx =

d∫
c

b∫
a

f (x, y) dxdy.

Example 175 If R = {(x, y)|0 ≤ x ≤ 1 and 0 ≤ y ≤ 2},then evaluate∫∫
R

(x− y + 1) dA.
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Solution 176 ∫∫
R

(x− y + 1) dA =

1∫
0

2∫
0

(x− y + 1) dydx

=

1∫
0

(
xy − y2

2
+ y

)y=2
y=0

dx

=

1∫
0

2xdx = x2|x=1x=0 = 1

We leave it as an exercise to show that you get the same value by integrating
first with respect to x, that is, that

∫∫
R

(x− y + 1) dA =

2∫
0

1∫
0

(x− y + 1) dxdy = 1

Theorem 177 (Fubini’s Theorem) Suppose that f is continuous on the region
R defined by R = {(x, y)|a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x)}, for continuous
functions g1 and g2 where g1(x) ≤ g2(x), for all x in [a, b]. Then

∫∫
R

f (x, y) dA =

b∫
a

g2(x)∫
g1(x)

f (x, y) dydx.

Theorem 178 (Fubini’s Theorem) Suppose that f is continuous on the region
R defined by R = {(x, y)|c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y)}, for continuous
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functions h1 and h2 where h1(y) ≤ h2(y), for all y in [c, d]. Then

∫∫
R

f (x, y) dA =

d∫
c

h2(y)∫
h1(y)

f (x, y) dxdy.

Example 179 If R = {(x, y)|0 ≤ x ≤ 1 and 0 ≤ y ≤ x},then evaluate∫∫
R

(x− y + 1) dA.

Solution 180

1∫
0

x∫
0

(x− y + 1) dydx =

1∫
0

(
xy − y2

2
+ y

)
|y=xy=0dx

=

1∫
0

(
x2

2
− x
)
dx =

(
x3

6
− x2

2

)
|x=1x=0 =

−1

3

Example 181 Evaluate
∫∫
R

(x+ y) dA where R be the region bounded by the

line y = x+ 1 and the curve y = x2 − 1.
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Solution 182

∫∫
R

(x+ y) dydx =

2∫
−1

y=x+1∫
y=x2−1

(x+ y) dydx =

2∫
−1

(
xy +

y2

2

)y=x+1
y=x2−1

dx

=

2∫
−1

(
x (x+ 1) +

(x+ 1)
2

2
− x

(
x2 − 1

)
−
(
x2 − 1

)2
2

)
dx

=
99

20
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8.8.1 Properties of Double Integrals

We list here three properties of double integrals

1.
∫∫
R

kf (x, y) dA = k

∫∫
R

f (x, y) dA for any k ∈ R.

2.
∫∫
R

[f (x, y)± g (x, y)] dA =

∫∫
R

f (x, y) dA±
∫∫
R

g (x, y) dA

3. If f (x, y) ≥ 0 on R then
∫∫
R

f (x, y) dA ≥ 0

4. If f (x, y) ≥ g (x, y) on R then
∫∫
R

f (x, y) dA ≥
∫∫
R

g (x, y) dA

Example 183 Evaluate the iterated integral

1∫
0

1∫
y

ex
2

dxdy.

Solution 184 First, note that we cannot evaluate the integral the way it is
presently written, as we don’t know an antiderivative for ex

2

. If we switch the
order of integration, the integral becomes quite simple.

1∫
0

1∫
y

ex
2

dxdy =

1∫
0

x∫
0

ex
2

dydx =

1∫
0

[
ex

2

y
]y=x
y=0

dx =

1∫
0

[
ex

2

x
]
dx

=
1

2
ex

2

|x=1x=0 =
1

2
(e− 1) .
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