8.8 DOUBLE INTEGRALS

Definition 173 Let $f(x, y)$ be a continuous function defined on a bounded region B in the $x y-p l a n e ~ a n d ~ l e t ~$

$$
P=\left\{B_{i}: 1 \leq i \leq n\right\}
$$

be a partition of B by lines parallel to the coordinate axes, and define the norm of P as $\|P\|=\max _{1 \leq i \leq n} d_{i}$ where

$$
\begin{gathered}
d_{i}=\sup \left\{d(x, y): x, y \in B_{i}\right\} \\
\|P\|=\max _{1 \leq i \leq n}\left\{d\left(B_{1}\right), d\left(B_{2}\right), \cdots, d\left(B_{n}\right)\right\}
\end{gathered}
$$

For each $1 \leq i \leq n$ pick any point $\left(x_{i}, y_{i}\right) \in B_{i}$ and form the following sum

$$
\sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) \nabla A_{i}
$$

where ∇A_{i} is the area of B_{i}. Such a sum is called an approximating sum or Riemann sum. Roughly speaking the double integral

$$
\iint_{B} f(x, y) d A
$$

of f over B is defined to be the limit

$$
\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) \nabla A_{i}
$$

In this case, we say that f is integrable on B.
Theorem 174 Suppose that f is integrable over the rectangle $R=\{(x, y) \mid a \leq$ $x \leq b$ and $c \leq y \leq d\}$. Then we can write the double integral of f over R as either of the iterated integrals:

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Example 175 If $R=\{(x, y) \mid 0 \leq x \leq 1$ and $0 \leq y \leq 2\}$, then evaluate $\iint_{R}(x-y+1) d A$.

Solution 176

$$
\begin{aligned}
\iint_{R}(x-y+1) d A & =\int_{0}^{1} \int_{0}^{2}(x-y+1) d y d x \\
& =\int_{0}^{1}\left(x y-\frac{y^{2}}{2}+y\right)_{y=0}^{y=2} d x \\
& =\int_{0}^{1} 2 x d x=\left.x^{2}\right|_{x=0} ^{x=1}=1
\end{aligned}
$$

We leave it as an exercise to show that you get the same value by integrating first with respect to x, that is, that

$$
\iint_{R}(x-y+1) d A=\int_{0}^{2} \int_{0}^{1}(x-y+1) d x d y=1
$$

Theorem 177 (Fubini's Theorem) Suppose that f is continuous on the region R defined by $R=\left\{(x, y) \mid a \leq x \leq b\right.$ and $\left.g_{1}(x) \leq y \leq g_{2}(x)\right\}$, for continuous functions g_{1} and g_{2} where $g_{1}(x) \leq g_{2}(x)$, for all x in $[a, b]$. Then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Theorem 178 (Fubini's Theorem) Suppose that f is continuous on the region R defined by $R=\left\{(x, y) \mid c \leq y \leq d\right.$ and $\left.h_{1}(y) \leq x \leq h_{2}(y)\right\}$, for continuous
functions h_{1} and h_{2} where $h_{1}(y) \leq h_{2}(y)$, for all y in $[c, d]$. Then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Example 179 If $R=\{(x, y) \mid 0 \leq x \leq 1$ and $0 \leq y \leq x\}$, then evaluate $\iint_{R}(x-y+1) d A$.

Solution 180

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{x}(x-y+1) d y d x & \left.=\int_{0}^{1}\left(x y-\frac{y^{2}}{2}+y\right) \right\rvert\, \begin{array}{|l}
y=x \\
y=0
\end{array} d x \\
& \left.=\int_{0}^{1}\left(\frac{x^{2}}{2}-x\right) d x=\left(\frac{x^{3}}{6}-\frac{x^{2}}{2}\right) \right\rvert\, \begin{array}{l}
x=1 \\
x=0
\end{array}=\frac{-1}{3}
\end{aligned}
$$

Example 181 Evaluate $\iint_{R}(x+y) d A$ where R be the region bounded by the line $y=x+1$ and the curve $y=x^{2}-1$.

Solution 182

$$
\begin{aligned}
\iint_{R}(x+y) d y d x & =\int_{-1}^{2} \int_{y=x^{2}-1}^{y=x+1}(x+y) d y d x=\int_{-1}^{2}\left(x y+\frac{y^{2}}{2}\right)_{y=x^{2}-1}^{y=x+1} d x \\
& =\int_{-1}^{2}\left(x(x+1)+\frac{(x+1)^{2}}{2}-x\left(x^{2}-1\right)-\frac{\left(x^{2}-1\right)^{2}}{2}\right) d x \\
& =\frac{99}{20}
\end{aligned}
$$

8.8.1 Properties of Double Integrals

We list here three properties of double integrals

1. $\iint_{R} k f(x, y) d A=k \iint_{R} f(x, y) d A$ for any $k \in \mathbb{R}$.
2. $\iint_{R}[f(x, y) \pm g(x, y)] d A=\iint_{R} f(x, y) d A \pm \iint_{R} g(x, y) d A$
3. If $f(x, y) \geq 0$ on R then $\iint_{R} f(x, y) d A \geq 0$
4. If $f(x, y) \geq g(x, y)$ on R then $\iint_{R} f(x, y) d A \geq \iint_{R} g(x, y) d A$

Example 183 Evaluate the iterated integral $\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y$.
Solution 184 First, note that we cannot evaluate the integral the way it is presently written, as we don't know an antiderivative for $e^{x^{2}}$. If we switch the order of integration, the integral becomes quite simple.

$$
\begin{aligned}
\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y & =\int_{0}^{1} \int_{0}^{x} e^{x^{2}} d y d x=\int_{0}^{1}\left[e^{x^{2}} y\right]_{y=0}^{y=x} d x=\int_{0}^{1}\left[e^{x^{2}} x\right] d x \\
& =\left.\frac{1}{2} e^{x^{2}}\right|_{x=0} ^{x=1}=\frac{1}{2}(e-1)
\end{aligned}
$$

