Solution $259 \int_{C} x y d x+x z d y+y z d z$ is a second type line integral of vector field. 2

$$
\begin{aligned}
\int_{C} x y d x+x z d y+y z d z & =\int_{0}^{1}\left(t^{2} t 2 t+t^{2} t^{3}+t t^{3} 3 t^{2}\right) d t \\
& =\int_{0}^{1}\left(2 t^{4}+t^{5}+3 t^{6}\right) d t \\
& \frac{209}{210}
\end{aligned}
$$

9.3 Fundamental Properties of Line Integrals

Theorem 260 Let f be a continuously differentiable function on C, where C is a smooth curve which starts at $\left(x_{1}, y_{1}, z_{1}\right)$ and ends at $\left(x_{2}, y_{2}, z_{2}\right)$. Then

$$
\begin{aligned}
\int_{C} \operatorname{grad} f \cdot d r & =\int_{C} \nabla f \cdot d r \\
& =f\left(x_{2}, y_{2}, z_{2}\right)-f\left(x_{1}, y_{1}, z_{1}\right)
\end{aligned}
$$

where $\operatorname{grad} f=\nabla f=f_{x} i+f_{y} j+f_{z} k$.
Example 261 Evaluate $\int_{C} F d r$ where

$$
C: r(t)=\cos t i+\sin t j+t k, 0 \leq t \leq 2 \pi
$$

and

$$
F(x, y, z)=2 x y^{3} z i+3 x^{2} y^{2} z j+x^{2} y^{3} k .
$$

Solution 262 First way:

$$
\begin{aligned}
\int_{C} F d r= & \int_{C}\left(2 x y^{3} z\right) d x+\left(3 x^{2} y^{2} z\right) d y+x^{2} y^{3} d z \\
= & \int_{0}^{2 \pi} 2 \cos t\left(\sin ^{3} t\right) t(-\sin t) d t \\
& +\int_{0}^{2 \pi} 3 \cos ^{2} t\left(\sin ^{2} t\right) t(\cos t) d t \\
& +\int_{0}^{2 \pi} \cos ^{2} t\left(\sin ^{3} t\right) d t \\
= & 0
\end{aligned}
$$

Second Way:If we assume $f(x, y, z)=x^{2} y^{3} z$ then $\operatorname{grad} f(x, y, z)=F(x, y, z)$

$$
\begin{aligned}
\int_{C} F d r & =\int_{C} \operatorname{grad} f \cdot d r \\
& =f(1,0,2 \pi)-f(1,0,0)=0-0=0
\end{aligned}
$$

Definition 263 First suppose that \vec{F} is a continuous vector field in some domain D.

1. \vec{F} is conservative vector field if there is a function f such that $\vec{F}=\nabla f=$ $\operatorname{grad} f$. The function f is called a potential function for the vector field.
2. $\int_{C} F d r$ is independent of path if $\int_{C_{1}} F d r=\int_{C_{2}} F d r$ for any two paths C_{1} and C_{2} in D with the same initial and final points.
3. A path C is called closed if its initial and end points are the same point. For example a circle is aclosed path.
4. A path C is simple if it doesn't cross itself. A circle is a simple curve.
5. A region D is open if it doesn't any of its boundary point.
6. A region D is connected if we can connect any two points in the region with a path that lies completly in D.

Theorem 264 If the vector field F is a gradient vector of a differentiable function f then $\int_{C} F \cdot d r$ is independent of path.

Notation 265 Let assume the vector field as

$$
F(x, y, z)=P i+Q j+R k
$$

If $F=\operatorname{grad} f$ i.e., $f_{x}=P, f_{y}=Q, f_{z}=R$ then we can write $f_{x} d x+f_{y} d y+$ $f_{z} d z=d f$. So $P d x+Q d y+R d z$ is an exact differential.

Remark 266 Let the functions P, Q, R are continuous in a region D. If $P d x+Q d y+R d z$ is an exact differential then for any two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ in D and any curve C in D from $\left(x_{1}, y_{1}, z_{1}\right)$ to $\left(x_{2}, y_{2}, z_{2}\right)$, then

$$
\int_{C} P d x+Q d y+R d z=f\left(x_{2}, y_{2}, z_{2}\right)-f\left(x_{1}, y_{1}, z_{1}\right)
$$

Theorem 267 If C is a simple closed curve in D and $\int_{C} F d r$ is independent of path in D, then

$$
\int_{C} F \cdot d r=0
$$

Notation 268 We can use the symbol \oint_{C} to show that the curve is simple and closed.

Notation 269 If $d f=P d x+Q d y$ satisfies then $f_{x}=P$ and $f_{y}=Q$

$$
\begin{align*}
& f_{x}(x, y)=P(x, y) \tag{10}\\
& f_{y}(x, y)=Q(x, y) \tag{11}
\end{align*}
$$

By using (??) we write

$$
\begin{equation*}
f(x, y)=\int P(x, y) d x+\varphi(y) \tag{12}
\end{equation*}
$$

Then if we differentiate the equation (12) with respect to y we write

$$
Q(x, y)=f_{y}(x, y)=\frac{d}{d y} \int P(x, y) d x+\varphi^{\prime}(y)
$$

by using (??). Using the last equation by taking integral we get $\varphi(y)$. Finally we obtain the function f. Then if the beginning point of curveis $\left(x_{1}, y_{1}\right)$ and end point $\left(x_{2}, y_{2}\right)$ we can write integral as;

$$
\int_{C} P d x+Q d y=\int_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)} P d x+Q d y=f\left(x_{2}, y_{2}\right)-f\left(x_{1}, y_{1}\right)
$$

Example 270 Evaluate the integral $\int_{(0,0)}^{(1,2)}\left(y^{2}-2 x y\right) d x+\left(2 x y-x^{2}+1\right) d y$.
Solution $271 P(x, y)=\left(y^{2}-2 x y\right)$ and $Q(x, y)=\left(2 x y-x^{2}+1\right)$. Since

$$
P_{y}=2 y-2 x=Q x
$$

$P d x+Q d y$ is an exact differential. So the integral is independent of path. Now we will find the function f such that

$$
d f=P d x+Q d y
$$

$$
\begin{gathered}
f_{x}=P(x, y)=\left(y^{2}-2 x y\right) \\
f_{y}=Q(x, y)=\left(2 x y-x^{2}+1\right) \\
f(x, y)=\int\left(y^{2}-2 x y\right) d x+\varphi(y) \\
=\left(y^{2} x-x^{2} y\right) d x+\varphi(y) \\
2 y x-x^{2}+\varphi^{\prime}(y)=f_{y}=Q(x, y)=\left(2 x y-x^{2}+1\right) \\
\varphi^{\prime}(y)=1 \Rightarrow \varphi(y)=y
\end{gathered}
$$

Finally

$$
f(x, y)=y^{2} x-x^{2} y+y
$$

$$
\int_{(0,0)}^{(1,2)}\left(y^{2}-2 x y\right) d x+\left(2 x y-x^{2}+1\right) d y=f(1,2)-f(0,0)
$$

$$
=4
$$

Remark 272 If D is asimple connected regioan and P, Q, R are the functions with continuous derivatives in D, then $P d x+Q d y+R d z$ is an exact differential if and only if

$$
P_{y}=Q_{x}, P_{z}=R_{x}, Q_{z}=R_{y}
$$

Example 273 Evaluate the integral

$$
I=\int_{(0,0,0)}^{(1,1,1)}(y z+y+z+1) d x+(x z+x+z+2) d y+(x y+x+y+3) d z
$$

Solution $274 P(x, y, z)=(y z+y+z+1), Q(x, y, z)=(x z+x+z+2)$ and $R(x, y, z)=(x y+x+y+3)$. Since

$$
P_{y}=Q_{x}, P_{z}=R_{x}, Q_{z}=R_{y}
$$

$P d x+Q d y+R d z$ is an exact differential.

$$
f(x, y, z)=x y z+x y+x z+x+z y+2 y+3 z
$$

$$
\begin{aligned}
I & =\int_{(0,0,0)}^{(1,1,1)}(y z+y+z+1) d x+(x z+x+z+2) d y+(x y+x+y+3) d z \\
& =f(1,1,1)-f(0,0,0)=10
\end{aligned}
$$

Theorem 275 (Green's Theorem) Let B be a closed plane region bounded by a simple curve C.If the vector field $F(x, y)=P(x, y) i+Q(x, y) j$ is continuously differentiable (i.e., P and Q have continuous first partial derivatives) if C is traversed in the counter-clockwise direction then

$$
\begin{aligned}
\oint_{C} F \cdot d r & =\int_{C} P(x, y) d x+Q(x, y) d y \\
& =\iint_{B}\left(\frac{\partial Q}{\partial x} \frac{-\partial P}{\partial y}\right) d x d y
\end{aligned}
$$

Example 276 Evaluate $I=\oint_{C} 2 x y^{3} d x+4 x^{2} y^{2} d y$, where C is the boundary of the region B bounded by the curve $y=x^{3}$, the line $x=1$ and x-axis.(C is directed in the possitive direction)

Solution $277 P(x, y)=2 x y^{3}$ and $Q(x, y)=4 x^{2} y^{2} \cdot \frac{\partial Q}{\partial x} \frac{-\partial P}{\partial y}=8 x y^{2}-6 x y^{2}=$ $2 x y^{2}$

$$
\begin{aligned}
I & =\oint_{C} 2 x y^{3} d x+4 x^{2} y^{2} d y==\iint_{B}\left(\frac{\partial Q}{\partial x} \frac{-\partial P}{\partial y}\right) d x d y \\
& =\iint_{B} 2 x y^{2} d x d y=\iint_{0}^{1} \int_{0}^{x^{3}} 2 x y^{2} d x d y=\frac{2}{33}
\end{aligned}
$$

9.4 Applications of Line Integrals

9.4.1 Area

Let assume that B is a simple region in $x y$ - plane and C is a boundary curve of B which is traversed in the counter clockwise direction. Then by using Green's Formula we get the area of region B bounded by closed curve C as

$$
\begin{gathered}
A=\int_{C} x d y=\iint_{B} d x d y \\
A=\int_{C}-y d x=\iint_{B} d x d y
\end{gathered}
$$

If we sum these equations we find

$$
A=\frac{1}{2} \int_{C} x d y-y d x
$$

