Theorem 275 (Green's Theorem) Let B be a closed plane region bounded by a simple curve C.If the vector field $F(x, y)=P(x, y) i+Q(x, y) j$ is continuously differentiable (i.e., P and Q have continuous first partial derivatives) if C is traversed in the counter-clockwise direction then

$$
\begin{aligned}
\oint_{C} F \cdot d r & =\int_{C} P(x, y) d x+Q(x, y) d y \\
& =\iint_{B}\left(\frac{\partial Q}{\partial x} \frac{-\partial P}{\partial y}\right) d x d y
\end{aligned}
$$

Example 276 Evaluate $I=\oint_{C} 2 x y^{3} d x+4 x^{2} y^{2} d y$, where C is the boundary of the region B bounded by the curve $y=x^{3}$, the line $x=1$ and x-axis.(C is directed in the possitive direction)

Solution $277 P(x, y)=2 x y^{3}$ and $Q(x, y)=4 x^{2} y^{2} \cdot \frac{\partial Q}{\partial x} \frac{-\partial P}{\partial y}=8 x y^{2}-6 x y^{2}=$ $2 x y^{2}$

$$
\begin{aligned}
I & =\oint_{C} 2 x y^{3} d x+4 x^{2} y^{2} d y==\iint_{B}\left(\frac{\partial Q}{\partial x} \frac{-\partial P}{\partial y}\right) d x d y \\
& =\iint_{B} 2 x y^{2} d x d y=\iint_{0}^{1} \int_{0}^{x^{3}} 2 x y^{2} d x d y=\frac{2}{33}
\end{aligned}
$$

9.4 Applications of Line Integrals

9.4.1 Area

Let assume that B is a simple region in $x y$ - plane and C is a boundary curve of B which is traversed in the counter clockwise direction. Then by using Green's Formula we get the area of region B bounded by closed curve C as

$$
\begin{gathered}
A=\int_{C} x d y=\iint_{B} d x d y \\
A=\int_{C}-y d x=\iint_{B} d x d y
\end{gathered}
$$

If we sum these equations we find

$$
A=\frac{1}{2} \int_{C} x d y-y d x
$$

Example 278 Find the area of a circle with radius a by using line integrals.
Solution 279 Lets first write the parametric equation of circle.

$$
\begin{aligned}
& C: r(t)=a \cos t i+a \sin t j, 0 \leq t \leq 2 \pi \\
& A=\frac{1}{2} \int_{C} x d y-y d x=\frac{1}{2} \int_{0}^{2 \pi}[(a \cos t)(a \cos t)+(a \sin t)(a \sin t)] d t \\
&= \frac{1}{2} \int_{0}^{2 \pi} a^{2} d t=\pi a^{2} \text { units }^{2}
\end{aligned}
$$

9.4.2 Lenght of a Curve

If C is a smooth curve and f is an integrable function defined on C, then the length of the curve is

$$
L=\int_{C} d l
$$

Example 280 Find the arclength of the following curve.

$$
r(t)=t i+\frac{3}{2} t^{2} j+\frac{3}{2} t^{3} k, 0 \leq t \leq 2
$$

Solution 281

$$
\begin{aligned}
L & =\int_{C} d l=\int_{0}^{2}\left\|r^{\prime}(t)\right\| d t \\
& =\int_{0}^{2} \sqrt{1+(3 t)^{2}+\left(\frac{9}{2} t^{2}\right)^{2}} d t \\
& =\int_{0}^{2} \sqrt{\left(1+\left(\frac{9}{2} t^{2}\right)\right)^{2}} d t=\int_{0}^{2}\left(1+\left(\frac{9}{2} t^{2}\right)\right) d t \\
& =\left(t+\frac{3}{2} t^{3}\right)_{0}^{2}=14 \text { units }
\end{aligned}
$$

9.4.3 Mass and the center of a Mass

Let assume a wire on the curve C. If the density of this wire on the point (x, y, z) $\sigma(x, y, z)$ is continuous then the mass is

$$
M=\int_{C} \sigma(x, y, z) d l
$$

The center of a mass of a wire given by

$$
\begin{aligned}
\bar{x} & =\frac{1}{M} \int_{C} x \sigma(x, y, z) d l \\
\bar{y} & =\frac{1}{M} \int_{C} y \sigma(x, y, z) d l \\
\bar{z} & =\frac{1}{M} \int_{C} z \sigma(x, y, z) d l
\end{aligned}
$$

Example 282 Let assume a wire ring on a circle $x^{2}+y^{2}=a^{2}$ on $x y$-plane. If the density of this ring on the point (x, y) is $\sigma(x, y)=|x|+\frac{a}{\pi}$, then evaluate the mass and the coordinates of the center of mass of this ring.

Solution 283 Since the wire on $x y$-plane $\bar{z}=0$. The parametric equation of circle is

$$
\left.\begin{array}{rl}
& r(t)=a \cos t i+a \sin t j, 0 \leq t \leq 2 \pi \\
M & =\int_{C} \sigma(x, y, z) d l=\int_{C}\left(|x|+\frac{a}{\pi}\right) d l=\int_{0}^{2 \pi}\left(|a \cos t|+\frac{a}{\pi}\right) a d t \\
= & \int_{0}^{\pi / 2}\left(a \cos t+\frac{a}{\pi}\right) d t+\int_{\pi / 2}^{\pi}\left(-a \cos t+\frac{a}{\pi}\right) d t \\
+\int_{\pi}^{3 \pi / 2}\left(-a \cos t+\frac{a}{\pi}\right) d t+\int_{3 \pi / 2}^{2 \pi}\left(a \cos t+\frac{a}{\pi}\right) d t
\end{array}\right\}
$$

9.4.4 Calculation of Work

Work done by a force F on an object moving along a curve C is described by the line integral

$$
W=\int_{C} F \cdot d r
$$

where $d r$ is the unit tangent vector. If the force F given by

$$
F(x, y, z)=P(x, y, z) i+Q(x, y, z) j+R(x, y, z) k
$$

then the formula of work is given by

$$
W=\int_{C} F \cdot d r=\int_{C} P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z
$$

Example 284 A particle is moving upwards under the influence of the force F,

$$
F(x, y, z)=-y z i+x z j+x y k
$$

on the Helix curve

$$
r(t)=\cos t i+\sin t j+t k .
$$

Evaluate the work.

Solution 285

$$
\begin{aligned}
W & =\int_{0}^{2 \pi}-y z d x+x z d y+x y d z \\
& =\int_{0}^{2 \pi}[(-t \sin t(-\sin t))+t \cos t(\cos t)+\cos t \sin t] d t \\
& =\int_{0}^{2 \pi}(t+\cos t \sin t) d t \\
& =2 \pi^{2}
\end{aligned}
$$

