MTH3338 PARTIAL DIFFERENTIAL EQUATIONS
The books we will use in this course are given as follows:

1. Tan Sneddon , Elements of Partial Differential Equations, McGraw-Hill
International Editions (Mathematics Series), 1985

2. Richard Haberman, Applied Partial Differential Equations: with Fourier
Series and Boundary Value Problems (Fourth Edition), Pearson Education (2004)

SECTION 1. ORDINARY DIFFERENTIAL EQUATIONS IN
MORE THAN TWO VARIABLES

1.1. Curves and Surfaces in 3-dimensional space
Surfaces in Three Dimensions

If the rectangular cartesian coordinates (x,y,z) of a point in three dimen-
sional space are connected by a single relation of the type

f(m,y,z) =0 (1)

the point lies on a surface. For this reason, we call the relation (1) the
equation of a surface S. In other words, equation (1) is a relation satisfied by
points which lie on a surface.

Such a surface is also represented by the equation z = F (x,y).

In three dimensional space, there is another important representation of the
surfaces. If we have a set of relations of the form

x=F (u,v) , y=Fy(u,v), z=F;3(u,v) (2)

then to each pair of values of u,v there corresponds a set of numbers (x,y, 2)
and hence a point in space.
If we solve the first pair of equations

x=F (u,v) , y=F(u,v),
we can write 4 and v as functions of  and y

uz)\(sc,y) ) ’U::u(m?y)'

The corresponding value of z is obtained by substituting these values for u
and v into the third of the equation (2). That is, the value of z is determined
as

z=F3 ()‘(:Evy)au('r7y)>

so that there is a functional relation of type (1) between the three coordinates
x,y and z. Equation (1) expresses that the point (z,y, ) lies on a surface. The



equations (2) express that any point (z,y, z) determined from them always lies
on a fixed surface. For this reason, equations of this type are called ’parametric
equations’ of a surface. It is observed that parametric equations of a surface
are not unique, that is, the surface (1) can be represented by different forms of
the functions Fi, Fy, F5 of the set (2).

As an example, the set of parametric equations

T =asinucosv , y=asinusinv , z =acosu
and the set
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represent the spherical surface

$2+y2+z2 =a’
A surface in three dimensional space can be considered as being generated by
a curve. Indeed, a point whose coordinates verify equation (1) and which lies in
the plane z = k& (k is parameter) has the coordinates satisfying the equations

2=k, f(zyk)=0 (3)

which shows that the point (z,y, z) lies on a curve I'y, in the plane z = k.
Another example, if S is the sphere with 22 + y? 4 22 = a2, then points of S
with z = k have
2=k , 2 +y?=da’—k?
which shows that I'y is a circle of radius (a2 — k2)1/2 . As k changes from —a
to a, each point of the sphere is covered by one such circle.

Curves in Three Dimensions

The curve given by the pair of equations (3) can be considered as the inter-
section of the surface (1) with the plane z = k. This idea can be generalized.
Let the surfaces S; and Sy be given by the relations

F(x7y’z):0 Y G(x’y7z):()’

respectively. If these surfaces have common points, the coordinates of these
points satisfy a pair of equations

F(z,y,2)=0 , G(z,y,2)=0. (4)

The surfaces S; and Sy intersect in a curve C so that the locus of a point whose
coordinates satisfy a pair of equations (4) is a curve in a space.

A curve may be represented by parametric equations as a surface. Any three
equations of the form

r=f(t) , y=rfa(t) . 2= f3(t) (5)



in which ¢ is continuous variable, may be considered as the parametric equa-
tions of a curve.

Tangent of a Curve

We assume that P is any point on the curve

r=x(s) ,y=yl(s) , z=2(s) (6)

which is characterized by the value s of the arc length. Then s is the distance
Py P of P from some fixed point Py measured along the curve. Similarly, if @
is a point at a distance ¢, along the curve from P, the distance Py} becomes
s+ 05 and the coordinates of @ will be {z (s +ds), y(s+0s), z(s+ds)}-

The distance d is the distance from P to ) measured along the curve and
is greater than ., the length of the chord PQ. As Q) approaches the point P,
the difference 65 — §. becomes relatively less. Therefore, we shall confine

de
Eslg]a =1 (7)

On the other hand, the direction cosines of the chord PQ are

{LU(S—I—(;S)—.’L'(S) y(3+6s)_y(8) Z(S+6s)_z(8)}
de ’ Oc ’ Oc '

Dividing by increment s and taking limit é; — 0 by use of the limit (7),
the direction cosines of the tangent to the curve (6) at the point P are

dx dy dz

As ¢, tends to zero, the point @) tends to point P, and the chord PQ takes up
the direction to the tangent to the curve at P.

Normal of a Surface

Assume that the curve C' given by the equations (6) lies on the surface S
whose equation is F'(z,y, z) = 0 (Figure 5).
If
F(z(s),y(s),2(s)) =0, (9)

the point (z(s),y(s),z(s)) of the curve lies on this surface. Let the curve
entirely on the surface, then (9) becomes an identity for all values of s.
If we differentiate the equation (9) with respect to s, we have

OF dx OFdy OF dz
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which shows that the tangent T to the curve C' at the point P is perpendicular

to the vector
oF O0F OF
( oz’ Oy’ 0z > '
Also, this vector is perpendicular to the tangent to every curve lying on S and
passing through P. This vector is called as "Normal’ to the surface S at the
point P.
If the equation of the surface S is given by

(11)

and we denote
0z 0z

% =D aiy =4q,
then since F' = f(z,y) — #, we have F, = p, F, = q, F, = —1. Thus, unit
normal to the surface at the point (x,y, z) is

(12)

(p?qa_l) (13)
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Tangent of a Curve which is Intersection of Two Surfaces

The equation of the tangent plane II; at the point P (x,y, z) to the surface
S1 whose equation is F' (x,y,z) =0 is
oF oF or

X-a) g + V-9 5 +(Z -2 =

- 5 0 (14)

where (X,Y, Z) are the coordinates of any other point of the tangent plane.
Similarly, the equation of the tangent plane Il at P to the surface Sy whose
equation is G (z,y,2) = 0 is
oG oG oG
X—a2)—+Y —-y)—+Z—-2)— =
(X0 G+ =) G+ (29 G
The intersection L of the planes II; and Il is the tangent at P to the curve C,
which is the intersection of S; and Ss.
From (14) and (15), the equations of the line L are

X —x Y —y Z —z

0. (15)

F,G, - F.G, F.G,-F,G, F,G,-F,G, (16)
Also, the direction ratios of the line L are
{F,G. - F.Gy, F,G, — F,G,, F,G,— F,G,}
or
{8(F7 G) 0(F,G) O(F, G)} (17)
9(y,2) " 9(z2) d(2,y) |



Example 1 The direction cosines of the tangent at the point (x,y,z) to the
conic £2—y?+222 = 1, x+y+2z =1 are proportional to (—y—22,2z—x,2+vy).
F=a?—y>+22-1

G=x+y+z-1

=2(—y—2z) , etc. from (17).




