1.3. Pfaffian Differential Equations

Let $F_{i} \quad(i=1,2, \ldots, n)$ be functions of independent variables $x_{1}, x_{2}, \ldots, x_{n}$. The expression

$$
\begin{equation*}
\sum_{i=1}^{n} F_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{i} \tag{1}
\end{equation*}
$$

is called a Pfaffian differential form. The equation

$$
\begin{equation*}
\sum_{i=1}^{n} F_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{i}=0 \tag{2}
\end{equation*}
$$

is called Pfaffian differential equation.

1.3.1. Pfaffian Differential Equation In Two Variables

The Pfaffian differential equation in two variables is in the form

$$
\begin{equation*}
P(x, y) d x+Q(x, y) d y=0 \tag{3}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) \tag{4}
\end{equation*}
$$

where $f(x, y)=-P / Q$.
$f(x, y)$ is defined uniquely at each point of $x 0 y$ plane at which $P(x, y)$ and $Q(x, y)$ are defined. If P and Q are single-valued, $\frac{d y}{d x}$ is single-valued. The solution of (3) satisfying $y\left(x_{0}\right)=y_{0}$ gives the curve which passes through $\left(x_{0}, y_{0}\right)$ and whose tangent at each point is defined by (4).

If we generalize this simple geometrical argument, the equation (3) defines a one-parameter family of curves in $x 0 y$ plane. That is, there exists a function $\phi(x, y)$ in a certain region of the $x 0 y$ plane such that

$$
\begin{equation*}
\phi(x, y)=c \tag{5}
\end{equation*}
$$

defines a function $y(x)$ which satisfies identically the equation (3). Here, c is a constant.

If the differential form $P d x+Q d y$ may be written in the form $d \phi(x, y)$, the equation (3) is called exact or integrable. If the form is not exact, it follows from (5)

$$
\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y=0
$$

that there exists a function $\lambda(x, y)$ such that

$$
\frac{1}{P} \frac{\partial \phi}{\partial x}=\frac{1}{Q} \frac{\partial \phi}{\partial y}=\lambda
$$

If we multiply equation (3) by $\lambda(x, y)$, we can write

$$
0=\lambda(P d x+Q d y)=d \phi
$$

where $\lambda(x, y)$ is called an integrating factor of the pfaffian differential equation (3).

Theorem 1 A pfaffian differential equation in two variables always has an integrating factor.

1.3.2. Pfaffian Differential Equation In Three Variables

The pfaffian differential equation in three variables is in the form

$$
\begin{equation*}
P d x+Q d y+R d z=0 \tag{6}
\end{equation*}
$$

where P, Q, and R are functions of x, y, and z. By means of the vectors $X=$ (P, Q, R) and $d r=(d x, d y, d z)$, we can write the equation (6) in the vector notation as follows

$$
\begin{equation*}
X \cdot d r=0 \tag{7}
\end{equation*}
$$

Also,

$$
\operatorname{curl} X=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)
$$

Before considering this equation, we start with the following theorem:
Theorem 2 If X is a vector such that $X \cdot \operatorname{curl} X=0$ and λ is an arbitrary function of x, y, z then

$$
(\lambda X) \cdot \operatorname{curl}(\lambda X)=0
$$

Now, we return to the pfaffian differential equation (6). It is not true that all equations in this form possess integral. But, if there exists a function $\lambda(x, y, z)$ such that

$$
\lambda(P d x+Q d y+R d z)
$$

is an exact differential $d \phi$ of a function $\phi(x, y, z)$, the equation (6) is called integrable. $\lambda(x, y, z)$ is called an integrating factor of the equation (6) and the function ϕ is called the primitive function of the differential equation.

Now, we give the next theorem to determine whether or not the equation (6) is integrable:

Theorem 3 A necessary and sufficient condition that the pfaffian differential equation

$$
X \cdot d r=0
$$

should be integrable is that

$$
X \cdot \operatorname{curl} X=0 .
$$

Note: If λ is an integrating factor giving a solution $\phi=c$ and Φ is an arbitrary function of ϕ, then $\lambda\left(\frac{d \Phi}{d \phi}\right)$ is also integrating factor of the given equation. Since Φ is arbitrary, there are infinitely many integrating factors of this type.

We now consider methods for the solutions of pfaffian differential equations in three variables.
(a) By Inspection:

Example 1. Solve the equation

$$
3 y x^{2} d x+\left(y^{2} z-x^{3}\right) d y+y^{3} d z=0
$$

firstly show that it is integrable.
Solution:

$$
\begin{aligned}
X & =\left(3 y x^{2}, y^{2} z-x^{3}, y^{3}\right) \\
\operatorname{curl} X & =\left(2 y^{2}, 0,-6 x^{2}\right) \\
& \Rightarrow X \cdot \operatorname{curl} X=0
\end{aligned}
$$

So, the equation is integrable. We can write the equation in the form

$$
\begin{aligned}
& \Rightarrow y^{2}(z d y+y d z)-x^{3} d y+3 y x^{2} d x=0 \\
& \Rightarrow z d y+y d z-\frac{x^{3}}{y^{2}} d y+\frac{3 x^{2}}{y} d x=0 \\
& \Rightarrow d(y z)+d\left(\frac{x^{3}}{y}\right)=0
\end{aligned}
$$

So the primitive of the equation is

$$
\begin{aligned}
y z+\frac{x^{3}}{y} & =c \\
& \Rightarrow y^{2} z+x^{3}=c y \quad(c \text { is a constant })
\end{aligned}
$$

(b) Variables Separable:

In this case, such an equation is in the form

$$
\begin{aligned}
& \quad P(x) d x+Q(y) d y+R(z) d z=0 \\
& \Rightarrow \int P(x) d x+\int Q(y) d y+\int R(z) d z=c \\
& (c \text { is a constant })
\end{aligned}
$$

Example 2. Solve the equation

$$
4 y^{2} z^{2} d x+z^{2} x^{2} d y-x^{2} y^{2} d z=0
$$

Solution: Dividing by $x^{2} y^{2} z^{2}$,

$$
\begin{aligned}
& \frac{4}{x^{2}} d x+\frac{1}{y^{2}} d y-\frac{1}{z^{2}} d z=0 \\
& \int \frac{4}{x^{2}} d x+\int \frac{1}{y^{2}} d y-\int \frac{1}{z^{2}} d z=-c \\
& \Rightarrow-\frac{4}{x}-\frac{1}{y}+\frac{1}{z}=-c
\end{aligned}
$$

Integral surfaces are

$$
\frac{4}{x}+\frac{1}{y}-\frac{1}{z}=c, \quad(c \text { is a constant })
$$

(c) One Variable Separable:

In this case, the equation is of the form

$$
\begin{aligned}
P(x, y) d x+Q(x, y) d y+R(z) d z & =0, \quad \text { (we say, } z \text { is separable). } \\
X & =(P, Q, R) \Rightarrow \operatorname{curl} X=\left(0,0, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)
\end{aligned}
$$

The condition for integrability, $X \cdot \operatorname{curl} X=0$, implies that

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

So, $P d x+Q d y$ is an exact differential, i.e. $P d x+Q d y=d u$.
Thus,

$$
d u+R(z) d z=0
$$

the primitive of the equation is

$$
u(x, y)+\int R(z) d z=c
$$

Example 3. Verify that the equation

$$
y\left(x^{2}-a^{2}\right) d y+x\left(y^{2}-z^{2}\right) d x-z\left(x^{2}-a^{2}\right) d z=0
$$

is integrable and solve it.
Solution: Dividing by $\left(x^{2}-a^{2}\right)\left(y^{2}-z^{2}\right)$,

$$
\frac{y d y-z d z}{y^{2}-z^{2}}+\frac{x}{x^{2}-a^{2}} d x=0
$$

It is separable in x. Since $\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$, it is integrable.

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \frac{d\left(y^{2}-z^{2}\right)}{y^{2}-z^{2}}+\frac{1}{2} \frac{d\left(x^{2}-a^{2}\right)}{x^{2}-a^{2}}=0 \\
& \Rightarrow \frac{1}{2} \ln \left(y^{2}-z^{2}\right)+\frac{1}{2} \ln \left(x^{2}-a^{2}\right)=\frac{\ln c}{2} \\
& \Rightarrow\left(y^{2}-z^{2}\right)\left(x^{2}-a^{2}\right)=c
\end{aligned}
$$

(d) Homogeneous Equations:

The equation

$$
P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z=0
$$

is said to be homogeneous if the functions P, Q, R are homogeneous in x, y, z of the same degree n. To find the solution, we make the substitutions

$$
y=u x \quad, \quad z=v x
$$

then we apply method (c).
Example 4. Verify that the equation

$$
y z(y+z) d x+x z(x+z) d y+x y(x+y) d z=0
$$

is integrable and find its solution.
Solution: The condition of integrability is satisfied. If we first make substitutions

$$
\begin{aligned}
y & =u x, z=v x \\
d y & =u d x+x d u \quad, \quad d z=v d x+x d v
\end{aligned}
$$

then we obtain

$$
\frac{d x}{x}+\frac{v(v+1) d u+u(u+1) d v}{2 u v(u+v+1)}=0 .
$$

Splitting the factors of $d u$ and $d v$ into partial fractions,

$$
\begin{gathered}
\frac{2 d x}{x}+\left(\frac{1}{u}-\frac{1}{1+u+v}\right) d u+\left(\frac{1}{v}-\frac{1}{1+u+v}\right) d v=0 \\
\frac{2 d x}{x}+\frac{d u}{u}+\frac{d v}{v}-\frac{d u+d v}{1+u+v}=0 \\
\frac{2 d x}{x}+\frac{d u}{u}+\frac{d v}{v}-\frac{d(1+u+v)}{1+u+v}=0 \\
\Rightarrow 2 \ln x+\ln u+\ln v-\ln (1+u+v)=\ln c \\
\Rightarrow x^{2} u v=c(1+u+v) \quad, \quad c \text { is a constant }
\end{gathered}
$$

From $u=\frac{y}{x}, v=\frac{z}{x}$, the solution is

$$
x y z=c(x+y+z) .
$$

