
3. Heat Equation

In this section we will deal with the partial di¤erential equation
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which is a classic example of parabolic type equations with independent variables
x and t. This equation, known as the one dimensional heat equation, appears
during the study of heat conduction in objects. k is a constant that depends on
the degree of conductivity of the object under consideration and is called the
di¤usion constant.

3.1. Heat Conduction Problem

Consider a homogeneous straight bar of length L. Let�s assume that this bar,
which is located along the 0 � x � L range on the x-axis, is thin enough and
this situation ensures that the heat distribution over the vertical section of the
bar, corresponding to any moment t, can be taken equally.

Figure 3.1. Heat conduction in a thin bar

Also, let�s assume that the lateral surface of this bar is insulated so that there is
no heat loss across the surface. In this case, the heat �ow through the bar will
only be in the x-axis direction. Let us denote by u(x; t) the heat of the vertical
section of the bar at point x at any time t. In this case, the function u(x; t),
which gives the heat distribution in the bar, will be the solution of the initial
and boundary value problem given below.

3.2. Initial and Boundary Value Problem

Consider the one-dimensional heat equation

ut � kuxx = 0 ; 0 < x < L ; t > 0 (1)

u(x; 0) = f(x) ; 0 � x � L (2)

with initial condition and

u(0; t) = 0 ; u(L; t) = 0 ; t � 0 (3)

boundary condition. While solving such a problem, we will also explain a very
useful and powerful method that can be used to solve initial value or initial and
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boundary value or boundary value problems given for a wide class of partial
di¤erential equations of the hyperbolic, parabolic or elliptic type. In order to
create the basic steps in this method known as the method of separation of
variables, we will solve the initial and boundary value problems of the heat
equations described with (1), (2) and (3) above with this method. We seek a
solution of equation (1) in the form of

u(x; t) = X(x)T (t): (4)

In the solution (4), X is only a function of x, and T is only a function of t. If
partial derivatives uxx and ut are taken from (4) and they are written in (1),
we have

X(x)T
0
(t)� kX

00
(x)T (t) = 0:

T
0
(t) =

dT

dt
; X

00
(x) =

d2X

dx2

If we divide last expression by kTX and write it by separating its variables, we
obtain

T
0

kT
=
X

00

X
(5)

The left side of equation (5) depends only on the variable t, the right side
depends only on the variable x. If we take the partial derivatives of both sides
of (5) with respect to x and t respectively, we see that the derivative of the �rst
side with respect to x and the derivative of the second side with respect to t
are zero. This is only possible if both sides of (5) are equal to a constant. If we
denote the constant with ��, we have

T
0

kT
=
X

00

X
= ��; (6)

which gives ordinary di¤erential equations as follows

X
00
+ �X = 0 (7)

and
T
0
+ �kT = 0: (8)

Thus, the partial di¤erential equation (1) is replaced by the ordinary di¤erential
equations (7) and (8), which contain an parameter �. From (3), we have

u(0; t) = X(0)T (t) = 0 ) X(0) = 0

u(L; t) = X(L)T (t) = 0 ) X(L) = 0:

It then turns out that the functionX must be the solution to the Sturm Liouville
problem on 0 � x � L

X
00
+ �X = 0 ; 0 < x < L

X(0) = 0 ; X(L) = 0

�
: (9)
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The eigenvalues are

�n =
n2�2

L2
; n = 1; 2; ::: (10)

and the corresponding eigenfunctions are

Xn(x) = sin
n�x

L
; n = 1; 2; :::: (11)

On the other hand, for

�n =
n2�2

L2
(n � 1);

a solution of equation (8) is obtained as

Tn(t) = e
�k�nt: (12)

Thus,
un(x; t) = e

�k�nt sin
n�x

L
; n = 1; 2; ::: (13)

In order to obtain a solution to the problem given by (1), (2) and (3), let�s
consider a series of functions (13) in the form of

u(x; t) =
1X
n=1

bne
�k�nt sin

n�x

L
(14)

and let us determine the coe¢ cients bn to satisfy the initial conditions (2). If
we take t = 0 in (14) and keep (2) in mind, we see that the coe¢ cients bn must
satisfy the relation

f(x) =
1X
n=1

bn sin
n�x

L
; 0 � x � L: (15)

Since this is Fourier sine series of f(x) in the half interval [0; L], the Fourier
coe¢ cients bn are obtained by the formula

bn =
2

L

LZ
0

f(x) sin
n�x

L
dx ; n = 1; 2; ::::

The u(x; t) function de�ned by the series which is found by replacing the bn in
(14), becomes the desired solution of our problem.

Example 1. Find the solution of the initial and boundary value problem
given below

ut � uxx = 0 ; 0 < x < � ; t > 0

u(x; 0) = sinx ; 0 � x � �
u(0; t) = u(�; t) = 0 ; t � 0
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Solution: When the method of separation of variables is applied to the given
problem, it will be seen that it has a solution in the form of

u(x; t) =
1X
n=1

bne
�k�nt sin

n�x

L
:

If we take

k = 1 ; L = � ; �n =
n2�2

�2
= n2

since the coe¢ cients bn are found as follows

bn =
2

�

�Z
0

sinx sinnxdx =

�
1 ; n = 1
0 ; n > 1

;

the desired solution to the problem is obtained as

u(x; t) = b1e
��1t sinx+

1X
n>1

bne
�k�nt sin

n�x

L
= e�t sinx :

Example 2. Find the solution of the problem

ut � uxx = 0 ; 0 < x < � ; t > 0
u(x; 0) = x(� � x) ; 0 � x � �
u(0; t) = 0 ; u(�; t) = 0 ; t � 0

:

Solution: The given problem is the initial and boundary value problem with f(x) =
x(� � x) in the interval [0; �] for the heat equation with k = 1. When the sep-
aration of variables method is applied, it will be seen that it has a solution
as

u(x; t) =
1X
n=1

bne
�n2t sinnx :

If the coe¢ cients bn are calculated, they are found as

bn =
2

�

�Z
0

x(� � x) sinnxdx = 2
�Z
0

x sinnxdx� 2

�

�Z
0

x2 sinnxdx

= 4
1� (�1)n
�n3

=

�
0 ; for n = 2k

8
�(2k�1)3 ; for n = 2k � 1

Thus, the desired solution is obtained

u(x; t) =
8

�

1X
n=1

e�(2n�1)
2t

(2n� 1)3 sin(2n� 1)x
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