
3.3. Solution of Heat equation with initial and boundary conditions,
and Uniqueness of solution

Consider a homogeneous straight bar of length L. Let�s assume that this
bar, which is located along the 0 � x � L range on the x-axis, is thin enough
and this situation ensures that the heat distribution over the vertical section of
the bar, corresponding to any moment t, can be taken equally.

Heat conduction in a thin bar

Also, let�s assume that the lateral surface of this bar is insulated so that there is
no heat loss across the surface. In this case, the heat �ow through the bar will
only be in the x-axis direction. Let us denote by u(x; t) the heat of the vertical
section of the bar at point x at any time t. In this case, the function u(x; t),
which gives the heat distribution in the bar, will be the solution of the initial
and boundary value problem given below.

Initial and Boundary Value Problem

Consider the one-dimensional heat equation

ut � kuxx = 0 ; 0 < x < L ; t > 0 (1)

u(x; 0) = f(x) ; 0 � x � L (2)

with initial condition and

u(0; t) = 0 ; u(L; t) = 0 ; t � 0 (3)

boundary condition.
In the previous section, by the method of separation of variables, we �nd the

solution the initial and boundary value problems of the heat equations described
with (1), (2) and (3) in the form

u(x; t) =
1X
n=1

bne
�k�nt sin

n�x

L

where the coe¢ cient bn is given by

bn =
2

L

LZ
0

f(x) sin
n�x

L
dx ; n = 1; 2; ::::
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Theorem 1. This solution is unique if

ut � kuxx = 0 ; 0 < x < L ; t > 0
u(x; 0) = f(x) ; 0 � x � L
u(0; t) = 0 ; u(L; t) = 0 ; t � 0

has any solutionu(x; t) 2 C2(0 < x < L) \ C1(t > 0).

Proof: Let�s suppose that, there are two di¤erent solutions u1(x; t) and u2(x; t).
If we denote the di¤erence of u1 and u2 with

v(x; t) = u1(x; t)� u2(x; t);

the function v(x; t) will provide homogeneous initial and boundary value prob-
lem

vt � kvxx = 0 ; 0 < x < L ; t > 0
v(x; 0) = 0 ; 0 � x � L
v(0; t) = 0 ; v(L; t) = 0 ; t � 0

9=; : (4)

On the other hand, let�s de�ne a function w as

w(t) =
1

2k

LZ
0

v2 dx

and �nd the derivative of this function with respect to t as follows.

w0(t) =
1

k

LZ
0

v vt dx

Considering (4) if we apply the integration by parts, we have

w0(t) =
1

k

LZ
0

v(k vxx) dx =

LZ
0

v vxx dx = [v vx]
L
0 �

LZ
0

v2x dx:

Since
v(0; t) = v(L; t) = 0;

we obtain

w0(t) = �
LZ
0

v2x dx � 0: (5)

Then

w(0) =
1

2k

LZ
0

v2(x; 0) dx = 0 (6)
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is obtained by the condition v(x; 0) = 0. It is seen from (5) and (6) that w(t) is
a non-increasing function of t. That is to say,

w(t) � 0: (7)

But, due to the de�nition of w(t); we can write

w(t) � 0: (8)

(7) and (8) show that for t � 0

w(t) = 0:

For 0 � x � L and t � 0, since v(x; t) is continuous, we can write

w(t) =
1

2k

LZ
0

v2(x; t) dx = 0

) v(x; t) = 0

) v(x; t) = u1(x; t)� u2(x; t) � 0
) u1(x; t) � u2(x; t)

so the solution is unique.
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