4.3. Dirichlet Problem for a Circular Disk

Let D denote the interior of the circle 2 +y? < a? in the zy-plane and C denote
boundary of the circle
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Figure 4.3. Dirichlet problem for a circular disk

We want to find a function u(z,y) that is harmonic and equal to a previously
given function f(z,y) on the boundary C. That is, we want to solve the Dirichlet

problem given as
Ugg +Uyy =0 Inside D (1)
u= f*(z,y) , on C

In order to apply the method of separation of variables to such a problem, let’s
first write it in polar coordinates

r=rcosf y=rsinf ; 0<o6<2r , O<r<a.
Thus, we obtain the new form of the Laplace equation in (1) as follows
_— lu + %ueg —0 2)
In this case, the boundary condition (1) will be transformed as
u(a, ) = f(0) ; 0<6<2r (3)
where the function f(0) is defined as
f(0) = f*(acosf,asinb).

Thus, the boundary value problem given by (1) turns into another boundary
value problem that is equivalent to (2) and (3). Now let’s apply the method of



separation of variables to this problem and assume the existence of a following
solution

u(r,0) = R(r) ©(0).

If the necessary derivatives are taken and they are put in their places at (2), we
obtain . , "

R0 R 0(0)

R(r) — R(r) o)

where A is the separation constant. This last equation takes us to the following
ordinary differential equations that functions R and O, respectively, satisfy

=A

r?R"(r) +rR'(r) = AR(r) =0 (4)
and
0"(0) + X0(0) =0, (5)

respectively. In order for the solution of our problem to be a single-valued
function, its solution must be a 27 period function.That is,

u(r, 0+ 2m) = u(r,0)

must be provided. If © is 27 periodic, then the requirement is satisfied. Thus
© must satisfy the following periodic boundary conditions

O(—n) = O(n) , 0 (—m) =0'(n). (6)

With the condition (6), the eigenvalues of the Sturm Liouville system given by
(5) are obtained as
AM=n%; n=0,1,2..

and the corresponding eigenfunctions are written as
©,(0) = C, cosnb + D,, sinnb.
For A = 0, the general solution of equation (4) should be
Ro(r) = Ap+ Byplnr

and for A\, =n? ; n=0,1,2,..., the general solution of the equation can be

found as
R, (r)= A" + Br™"

Thus, all functions in the form of u,(r, ) given by

Un(r,0) = Ag+Bolnr+(A,r"+B,r~")(C,, cosnf+D,, sinnf) (n=1,2,..
(7)
are periodic functions of 27 period and they satisfy the Laplace equation in
polar coordinates (2). These functions are called circular harmonics.
In order to obtain a solution to our problem given by (2) and (3), we will
construct a linear combination with infinite terms of functions (7). Since such a

r>0)



solution must be continuous in a region D that includes the origin point r = 0,
we must make assumptions to eliminate the logarithmic term and the terms
containing the negative powers of r. This means that in (7), B, = 0 should
be chosen for n = 0,1,2,...and for the solution, a series of the following form
should be considered

= % + 1; r"™(a, cosnf + f3,, sin nh) (8)

where we use the usual notation o, vy, 3,, satisfying

AO = ? ’ AnCn = Qp ) AnDn = 5

n*

Now let’s apply the boundary condition (3) to determine these constants. In
this case,

f0) = % + i a" (ay, cosnb + 3, sinnd) (9)
n=1

is obtained. This expression is the Fourier series of f in the interval [—m, ] and
the Fourier coefficients are expressed as follows

an=a"c, =L [ f(0)cosnfdf ; n=20,1,2,..
4 (10)
by, =a"B, =1 ff( )sinnfdo n=0,1,2,..
If these values of «,, and §,, are put in their places (8),
= ?U Z f "(ay, cos nf + by, sinnb) (11)
— a

is obtained. Here a, and b, are the Fourier coefficients of f in [—m, 7] and
are given by integrals (10). The formula (11) together with the coefficients
(10) gives the solution we are looking for, namely the solution of the Dirichlet
problem for a circle given by (2) and (3). Now let’s show that indeed the series
(11) gives the solution to the Dirichlet problem in question. For this, let us first
assume that the function f is a continuous piecewise differentiable and periodic
function with a period of 27 in [—7, 7] and we say

— = [110)1d0.

Tt is clear from (10) that |a,| < M and |b,| < M. On the other hand, for

ag
Uy = —
2



if we define uy,(r,0) as follows
Un(r,0) = (i)"(ancoan—i—bnSinne) ; n=12..
a
for any rg < a and r < 7y, we have

r n r n
lun(r,0)] < ()" llan| + [bal] < 2M () (12)
Since the series with the general term 20 (i)" is uniformly convergent for r <
a

o, the series (11) will converge uniformly to u(r,d) 0 < r < a and so the
function u(r,d) will be continuous for 0 < r < a , 0 < 6 < 2x. Therefore, the
boundary condition (3) is satisfied for r = a

u(a,0) = % + Z(an cosnb + b, sinnb) = f(6).
n=1

Now let’s show that u satisfies the Laplace equation (2). If we take deriva-
tives term by term from the expression (11) of u(r,6) defined by a uniformly
convergent series and write in the Laplace equation (2), we have

Py 1ou 10% =1 2
w*;&ﬁﬁzgﬁ%w[n(n—1>+n—n]=07

so u verifies the Laplace equation.

Example 2. Solve the Dirichlet problem given as

uTTJr%uerr%ueg:O ; O<r<a
u(a,d) = acos® 0 ; 0<6<2r

1 1
Solution: Since acos?f = a(= + 5 cos 20), the desired solution is obtained by

using the formula (11)

2
u(r,0) = %(a + % cos 26).

Example 3. Find the solution for the Dirichlet problem given by
Ugz + Uyy = 0 ; for 22 +4y%2 <1
u = 1> ; for 224+9y%2=1"
Solution: Let’s write the problem in polar coordinates. Using these coordi-

nates

T =rcost , y=rsind,



the above problem becomes as follows

uw+%ur+%2u99:0 ; r<l1

1 .
u(1,0) = (rsinf)?| _ =sin*f = 5(1 —cos20) ;  0<6<2rm

Thus using formula

u(r,0) = aQ—O + Z(g)”(an cosnf + by, sinnb)

n=1

we obtain the solution in polar coordinates

u(r,0) = L

5(1 —r%cos 26).

If we return to cartesian coordinate system

u(r,0) = % [1—7r?(1—2sin*0)] = % [1—1r?+2(rsin6)?]
1
= S[-@+y)+27],

we find )
u(z,y) = 3 [1-—2%+y%].

4.4. Properties of Laplace Equation

In this section we give some qualitative properties that may be derived for
Laplace’s equation.

Mean value theorem

The solution of Laplace’s equation inside a circle, obtained in the previous
section by the method of separation of variables, gives an important result. If
we evaluate the temperature at the origin, r = 0, we discover from (8) in section
4.3. that

u(O,G):aO:%/f(O)dﬂ,

the temperature there equals the average value of the temperature at the edges
of the circle. This is called the mean value property for Laplace’s equation.
It is satisfied in general in the following specific sense. Suppose that we solve
Laplace’s equation in any region D. Let take any point ) inside D and a circle
of any radius p (such that the circle is inside D). Let the temperature on the
circle be f (), using polar coordinates centered at (). The temperature at any
point is the average of the temperature along any circle of radius p (lying inside
D) centered at that point.



Maximum principles

Suppose that the function w is solution of the Laplace equation in bounded
region D. Let u be continuous function which is not equal a constant in D. Then,
it takes the maximum and minimum values on the boundary of the region.

The maximum principle for Laplace’s equation is proved by Mean value
theorem.

Well-posedness and uniqueness

The maximum principle is a very useful tool for further analysis of partial
differential equations, especially in establishing qualitative properties. We say
that a problem is well posed if there exists a unique solution that depends con-
tinuously on the nonhomogeneous data (i.e., the solution varies a small amount
if the data are slightly changed). This is an important tool for physical prob-
lems. If the solution changed dramatically with only a small change in the data,
then any physical measurement would have to be exact in order for the solution
to be reliable. Most standard problems in partial differential equations are well
posed. For example, the maximum principle is used to prove that Laplace’s
equation Au =0 with v = f(x) on the boundary is well-posed.

Suppose that we change the boundary data a small amount such that Au =0
with v = h(x) on the boundary, where h(x) is nearly the same as f(z) every-
where on the boundary. We say z = u — v. From the linearity property,

Az=Au—-Av=0

on the boundary. From the maximum (and minimum) principles for Laplace’s
equation, the maximum and minimum occur on the boundary. Thus, at any
point inside,

min(f () — h(z)) < = < max(f(x) — h(x))

Due to the fact that h(z) is nearly the same as f(z) everywhere, z is small,
and thus the solution v is nearly the same as u; the solution of Laplace’s equation
changes a small amount when the boundary data change slightly.

On the other hand, we can also prove that the solution of Laplace’s equation
is unique. Suppose that there are two solutions u and v satisfying Laplace’s
equation that verify the same boundary condition f(x) = h(x). From the max-
imum and minimum principle, for the difference z = u — v it holds

0<z<0

inside the region. So z = 0 everywhere inside, and thus uw = v, which shows
that if a solution exists, it must be unique. Since the properties (uniqueness
and continuous dependence on the data) are satisfied, Laplace’s equation with
u specified on the boundary is a well-posed problem.



