
4.3. Dirichlet Problem for a Circular Disk

Let D denote the interior of the circle x2+y2 � a2 in the xy-plane and C denote
boundary of the circle

Figure 4.3. Dirichlet problem for a circular disk

We want to �nd a function u(x; y) that is harmonic and equal to a previously
given function f(x; y) on the boundary C. That is, we want to solve the Dirichlet
problem given as

uxx + uyy = 0 ; Inside D
u = f�(x; y) ; on C

�
(1)

In order to apply the method of separation of variables to such a problem, let�s
�rst write it in polar coordinates

x = r cos � ; y = r sin � ; 0 � � � 2� ; 0 < r � a :

Thus, we obtain the new form of the Laplace equation in (1) as follows

urr +
1

r
ur +

1

r2
u�� = 0 (2)

In this case, the boundary condition (1) will be transformed as

u(a; �) = f(�) ; 0 � � � 2� (3)

where the function f(�) is de�ned as

f(�) = f�(a cos �; a sin �):

Thus, the boundary value problem given by (1) turns into another boundary
value problem that is equivalent to (2) and (3). Now let�s apply the method of
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separation of variables to this problem and assume the existence of a following
solution

u(r; �) = R(r)�(�):

If the necessary derivatives are taken and they are put in their places at (2), we
obtain

r2
R00(r)

R(r)
+ r

R0(r)

R(r)
= ��

00(�)

�(�)
= �

where � is the separation constant. This last equation takes us to the following
ordinary di¤erential equations that functions R and �; respectively, satisfy

r2R00(r) + rR0(r)� �R(r) = 0 (4)

and
�00(�) + ��(�) = 0; (5)

respectively. In order for the solution of our problem to be a single-valued
function, its solution must be a 2� period function.That is,

u(r; � + 2�) = u(r; �)

must be provided. If � is 2� periodic, then the requirement is satis�ed. Thus
� must satisfy the following periodic boundary conditions

�(��) = �(�) ; �
0
(��) = �

0
(�): (6)

With the condition (6), the eigenvalues of the Sturm Liouville system given by
(5) are obtained as

�n = n
2 ; n = 0; 1; 2; :::

and the corresponding eigenfunctions are written as

�n(�) = Cn cosn� +Dn sinn�:

For � = 0; the general solution of equation (4) should be

R0(r) = A0 +B0 ln r

and for �n = n2 ; n = 0; 1; 2; :::; the general solution of the equation can be
found as

Rn(r) = Anr
n +Bnr

�n

Thus, all functions in the form of un(r; �) given by

un(r; �) = A0+B0 ln r+(Anr
n+Bnr

�n)(Cn cosn�+Dn sinn�) (n = 1; 2; ::: r > 0)
(7)

are periodic functions of 2� period and they satisfy the Laplace equation in
polar coordinates (2). These functions are called circular harmonics.
In order to obtain a solution to our problem given by (2) and (3), we will

construct a linear combination with in�nite terms of functions (7). Since such a
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solution must be continuous in a region D that includes the origin point r = 0,
we must make assumptions to eliminate the logarithmic term and the terms
containing the negative powers of r. This means that in (7),Bn = 0 should
be chosen for n = 0; 1; 2; :::and for the solution, a series of the following form
should be considered

u(r; �) =
�0
2
+

1X
n=1

rn(�n cosn� + �n sinn�) (8)

where we use the usual notation �0; �n; �n satisfying

A0 =
�0
2

; AnCn = �n ; AnDn = �n:

Now let�s apply the boundary condition (3) to determine these constants. In
this case,

f(�) =
�0
2
+

1X
n=1

an(�n cosn� + �n sinn�) (9)

is obtained. This expression is the Fourier series of f in the interval [��; �] and
the Fourier coe¢ cients are expressed as follows

an = a
n�n =

1
�

�R
��
f(�) cosn� d� ; n = 0; 1; 2; :::

bn = a
n�n =

1
�

�R
��
f(�) sinn� d� ; n = 0; 1; 2; :::

9>>=>>; : (10)

If these values of �n and �n are put in their places (8),

u(r; �) =
a0
2
+

1X
n=1

(
r

a
)n(an cosn� + bn sinn�) (11)

is obtained. Here an and bn are the Fourier coe¢ cients of f in [��; �] and
are given by integrals (10). The formula (11) together with the coe¢ cients
(10) gives the solution we are looking for, namely the solution of the Dirichlet
problem for a circle given by (2) and (3). Now let�s show that indeed the series
(11) gives the solution to the Dirichlet problem in question. For this, let us �rst
assume that the function f is a continuous piecewise di¤erentiable and periodic
function with a period of 2� in [��; �] and we say

M =
1

�

�Z
��

jf(�)j d�:

It is clear from (10) that janj �M and jbnj �M . On the other hand, for

u0 =
a0
2
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if we de�ne un(r; �) as follows

un(r; �) = (
r

a
)n(an cosn� + bn sinn�) ; n = 1; 2; :::

for any r0 < a and r � r0; we have

jun(r; �)j � (
r

a
)n [janj+ jbnj] � 2M(

r

a
)n (12)

Since the series with the general term 2M(
r

a
)n is uniformly convergent for r �

r0, the series (11) will converge uniformly to u(r; �) 0 � r � a and so the
function u(r; �) will be continuous for 0 � r � a , 0 � � � 2�. Therefore, the
boundary condition (3) is satis�ed for r = a

u(a; �) =
a0
2
+

1X
n=1

(an cosn� + bn sinn�) = f(�):

Now let�s show that u satis�es the Laplace equation (2). If we take deriva-
tives term by term from the expression (11) of u(r; �) de�ned by a uniformly
convergent series and write in the Laplace equation (2), we have

@2u

@r2
+
1

r

@u

@r
+
1

r2
@2u

@�2
=

1X
n=1

1

r2
un(r; �)

�
n(n� 1) + n� n2

�
= 0;

so u veri�es the Laplace equation.

Example 2. Solve the Dirichlet problem given as

urr +
1
rur +

1
r2u�� = 0 ; 0 < r < a

u(a; �) = a cos2 � ; 0 � � � 2�

Solution: Since a cos2 � = a(
1

2
+
1

2
cos 2�), the desired solution is obtained by

using the formula (11)

u(r; �) =
1

2
(a+

r2

a
cos 2�):

Example 3. Find the solution for the Dirichlet problem given by

uxx + uyy = 0 ; for x2 + y2 < 1
u = y2 ; for x2 + y2 = 1

:

Solution: Let�s write the problem in polar coordinates. Using these coordi-

nates
x = r cos � ; y = r sin �;
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the above problem becomes as follows

urr +
1
rur +

1
r2u�� = 0 ; r < 1

u(1; �) = (r sin �)2
��
r=1

= sin2 � =
1

2
(1� cos 2�) ; 0 � � � 2� :

Thus using formula

u(r; �) =
a0
2
+

1X
n=1

(
r

a
)n(an cosn� + bn sinn�)

we obtain the solution in polar coordinates

u(r; �) =
1

2
(1� r2 cos 2�):

If we return to cartesian coordinate system

u(r; �) =
1

2

�
1� r2(1� 2 sin2 �)

�
=
1

2

�
1� r2 + 2(r sin �)2

�
=

1

2

�
1� (x2 + y2) + 2y2

�
;

we �nd
u(x; y) =

1

2

�
1� x2 + y2

�
:

4.4. Properties of Laplace Equation

In this section we give some qualitative properties that may be derived for
Laplace�s equation.

Mean value theorem

The solution of Laplace�s equation inside a circle, obtained in the previous
section by the method of separation of variables, gives an important result. If
we evaluate the temperature at the origin, r = 0, we discover from (8) in section
4.3. that

u (0; �) = a0 =
1

2�

�Z
��

f (�) d�;

the temperature there equals the average value of the temperature at the edges
of the circle. This is called the mean value property for Laplace�s equation.
It is satis�ed in general in the following speci�c sense. Suppose that we solve
Laplace�s equation in any region D. Let take any point Q inside D and a circle
of any radius � (such that the circle is inside D). Let the temperature on the
circle be f (�), using polar coordinates centered at Q. The temperature at any
point is the average of the temperature along any circle of radius � (lying inside
D) centered at that point.
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Maximum principles

Suppose that the function u is solution of the Laplace equation in bounded
region D: Let u be continuous function which is not equal a constant in D: Then,
it takes the maximum and minimum values on the boundary of the region.
The maximum principle for Laplace�s equation is proved by Mean value

theorem.

Well-posedness and uniqueness

The maximum principle is a very useful tool for further analysis of partial
di¤erential equations, especially in establishing qualitative properties. We say
that a problem is well posed if there exists a unique solution that depends con-
tinuously on the nonhomogeneous data (i.e., the solution varies a small amount
if the data are slightly changed). This is an important tool for physical prob-
lems. If the solution changed dramatically with only a small change in the data,
then any physical measurement would have to be exact in order for the solution
to be reliable. Most standard problems in partial di¤erential equations are well
posed. For example, the maximum principle is used to prove that Laplace�s
equation �u = 0 with u = f(x) on the boundary is well-posed.
Suppose that we change the boundary data a small amount such that�u = 0

with v = h(x) on the boundary, where h(x) is nearly the same as f(x) every-
where on the boundary. We say z = u� v. From the linearity property,

�z = �u��v = 0

on the boundary. From the maximum (and minimum) principles for Laplace�s
equation, the maximum and minimum occur on the boundary. Thus, at any
point inside,

min(f(x)� h(x)) � z � max(f(x)� h(x))

Due to the fact that h(x) is nearly the same as f(x) everywhere, z is small,
and thus the solution v is nearly the same as u; the solution of Laplace�s equation
changes a small amount when the boundary data change slightly.
On the other hand, we can also prove that the solution of Laplace�s equation

is unique. Suppose that there are two solutions u and v satisfying Laplace�s
equation that verify the same boundary condition f(x) = h(x). From the max-
imum and minimum principle, for the di¤erence z = u� v it holds

0 � z � 0

inside the region. So z = 0 everywhere inside, and thus u = v; which shows
that if a solution exists, it must be unique. Since the properties (uniqueness
and continuous dependence on the data) are satis�ed, Laplace�s equation with
u speci�ed on the boundary is a well-posed problem.
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