5.2. D'Alembert Solution

One of the important applications of partial differential equation is vibrations of elastic strings and membranes. In this section, we consider one dimensional wave equation, representing a uniform vibrating string without external forces,

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

with initial conditions

$$
\begin{align*}
& u(x, 0)=f(x) \tag{2}\\
& u_{t}(x, 0)=g(x) \tag{3}
\end{align*}
$$

For a vibrating string with zero displacement at $x=0$ and $x=L$, we obtained the solution by the method of separation of variables

$$
\begin{equation*}
u_{n}(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \left(\frac{n \pi c t}{L}\right)+B_{n} \sin \left(\frac{n \pi c t}{L}\right)\right] \sin \left(\frac{n \pi x}{L}\right) \tag{4}
\end{equation*}
$$

It is seen that this solution can be written as the sum of a forward-moving wave and backward-moving wave

$$
u(x, t)=\frac{f(x+c t)+f(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

Initial Value Problem (Infinite Domain)

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 \quad ; \quad-\infty<x<\infty \quad, \quad t>0 \\
u(x, 0)=f(x) \quad, \quad u_{t}(x, 0)=g(x) \quad ; \quad-\infty<x<\infty
\end{gathered}
$$

Since the equation is type of hyperbolic, we apply the substitutions

$$
\begin{aligned}
\xi & =x+c t \\
\eta & =x-c t
\end{aligned}
$$

then we obtain the canonical form of the equation

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial \xi \partial \eta}=0 \\
\Rightarrow \quad u(x, t)=F(\xi)+G(\eta), \quad F, G \in C^{2} \\
\Rightarrow \quad u(x, t)=F(x+c t)+G(x-c t) \tag{5}
\end{gather*}
$$

The condition

$$
u(x, 0)=f(x)
$$

gives

$$
\begin{equation*}
f(x)=F(x)+G(x) . \tag{6}
\end{equation*}
$$

On the other hand, from (5), we get

$$
u_{t}(x, t)=c F^{\prime}(x+c t)-c G^{\prime}(x-c t) .
$$

From the condition

$$
u_{t}(x, 0)=g(x)
$$

we obtain

$$
\begin{equation*}
g(x)=c F^{\prime}(x)-c G^{\prime}(x) \tag{7}
\end{equation*}
$$

By the equations (6) and (7), it follows

$$
u(x, t)=\frac{f(x+c t)+f(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

This formula is called D'Alembert formula.
Example 1. Find the solution of wave equation

$$
u_{t t}-c^{2} u_{x x}=0
$$

with initial conditions

$$
u(x, 0)=\sin x \quad, \quad u_{t}(x, 0)=0 \quad ; \quad-\infty<x<\infty
$$

Solution: From D'Alembert formula

$$
\begin{aligned}
u(x, t) & =\frac{\sin (x+c t)+\sin (x-c t)}{2} \\
& =\frac{\sin x \cos c t+\cos x \sin c t+\sin x \cos c t-\cos x \sin c t}{2} \\
& =2 \frac{\sin x \cos c t}{2}=\sin x \cos c t
\end{aligned}
$$

which is desired. It is easily seen that the solution $u(x, t)$ satisfies both the equation and initial conditions.

Example 2. Find the solution of wave equation

$$
u_{t t}-c^{2} u_{x x}=0
$$

with initial conditions

$$
u(x, 0)=1, \quad u_{t}(x, 0)=\sin 2 x
$$

Solution: From D'Alembert formula, we have

$$
\begin{aligned}
u(x, t) & =1+\frac{1}{2 c} \int_{x-c t}^{x+c t} \sin 2 s d s=1+\left.\frac{1}{2 c}\left(-\frac{1}{2} \cos 2 s\right)\right|_{x-c t} ^{x+c t} \\
& =1+\frac{1}{4 c}[\cos 2(x-c t)-\cos 2(x+c t)] \\
& =1+\frac{1}{4 c}[\cos 2 x \cos 2 c t+\sin 2 x \sin 2 c t-\cos 2 x \cos 2 c t+\sin 2 x \sin 2 c t] \\
& =1+\frac{2 \sin 2 x \sin 2 c t}{4 c}=1+\frac{\sin 2 x \sin 2 c t}{2 c}
\end{aligned}
$$

