6. Sturm-Liouville Eigenvalue Problems
6.1. Some Examples
Heat Flow in a Nonuniform Rod

The temperature « in a nonuniform rod solves the partial differential equa-
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where @ denotes any possible sources of heat energy. The thermal coefficient
¢, p and K depend on z. The method of separation of variables is applied if (1)

is linear and homogeneous. Usually, we consider the case @ = 0. But, we will
be slightly more general. Assume that the heat source @) is proportunal to wu,

Q=au
where a can depend on z (but not on t). So
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We apply the method of separation of variables to solve this equation. We
assume that there is a homogeneous boundary condition (unspecified) at end
points x =0 and =z = L.
Consider
u(z,t) =X ()T (¢). (3)

If we substitute this function in (2), we obtain
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If we divide by ¢pX ()T (t), we have
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where -\ is separation constant.
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It is seen that if A > 0, it has exponentially decaying solutions; if A < 0, solution
grows and if A = 0 solution is constant.
The spatial differential equation is
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If two homogeneous boundary conditions are given, it forms a boundary value
problem. Here, the thermal coefficients a,c, p, Ky are not constant and the
equation (5) is a differential equation with nonconstant-coefficient. In general,
nonconstant-coeflicient differential equations occur appear in situations where
physical properties are nonuniform. Generally, we can not solve (5) in the
variable-coefficient case, but we can find a numerical approximate solution on
the computer. Later, we will return to reinvestigate heat flow in a nonuniform
rod.

Circularly Symmetric Heat Flow

The differential equations with nonconstant-coefficient also arise if the phys-
ical parameters are constant. In Section 1.5 we showed that if the temperature
u in some plane two dimensional region is circularly symmetric, that is, v de-
pends only on time ¢ and on the radial distance r from the origin), then u is the
solution of the linear and homogeneous partial differential equation
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where we assume that all the thermal coefficients are constant. By the method
of separation of variables, we seek for a solution in the form

u(r,t) =R(r)T ().

After necessary calculations, we obtain
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which gives two differential equations

dr (1)
T = AT (1) (7)

and
% (ﬂ@f’)) + MR (r) = 0. (8)

Here, the separation constant is denoted -\, because we expect solutions to
exponentially decay in time when A > 0. The solution of (7) is T (t) = Ce ?**
and also the equation (8) will be solved in terms of Bessel functions later.

We now consider the appropriate homogeneous boundary conditions for cir-
cularly symmetric heat flow inside circle and a circular annulus: In both cases,
let all boundaries be fixed at zero temperature. For the annulus, the boundary
conditions for (8) at the inner (r = a) and outer (r = b) concentric circular
walls

u(a,t) =0 and u(b,t) =0,



for the circle, the boundary condition for (8) is u (b,t) = 0. Because of the fact
that the physical variable r ranges from 0 to b, we need a homogeneous boundary
condition at r = 0 for mathematical reasons. So, we expect u bounded at r = 0,
that is, |u (0,%)] < co. Thus, we have homogeneous conditions at both r = 0
and r = b for the circle.

6.2. General Classification

A boundary value problem is formed of a linear homogeneous differential
equation and corresponding linear homogeneous boundary conditions. All of
the differential equations for boundary value problems are in form of
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here A\ denotes eigenvalue. Some examples of (9) are as follows:

a) Simplest case: it +Ap=0forp=1,¢g=0,0 =1.

dx?

b) Heat flow in a nonuniform rod: % (Ko %) + aX + AepX = 0 here the

dependent variable ¢ = X and p = Ky,q = a,0 = cp.

c¢) Circularly symmetric heat flow: % (T%) + ArR = 0 here the dependent
variable ¢ = R, the independent variable x = r and p(z) = z,¢(z) =0, o(z) =

x.

Many interesting results are related to any equation in the form (9). This
equation is called a Sturm—Liouville differential equation.

Boundary conditions. Some linear homogeneous boundary conditions are
as follows:

Heat flow Mathematical terminology
¢ = Fixed(zero) Dirichlet condition
temperature
d
dﬁ =0 Insulated Neumann condition
i
(Homogeneous)
dé Newton’s law of
T Fho cooling 0° Robin condition
v temperature,
h=H/Ky,h>0
d:f (=L) = (ZéL ) Perfect thermal Periodicity condition
— (=L)=— (L) contact (mixed type)
x x
| (0)] < o0 Bounded temperature Singularity condition



