6.4. Problems with a boundary condition of the third type

In this section we consider problems with a boundary condition of the third
kind with constant physical parameters.
While heat flow in a uniform rod satisfies
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a uniform vibrating string verifies
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We suppose that the left end is fixed, but the right end satisfies a homogeneous
boundary condition of the third kind:

u(0,t) = 0, 3)
%(L,t) = —hu(L,¢) (4)

We note that for heat conduction, the condition (4) corresponds to Newton’s
law of cooling if h > 0, and for the vibrating string problem, (4) corresponds to
a restoring force if h > 0, the so-called elastic boundary condition. In physical
problems, usually & > 0. But for mathematical results, we will study both cases
h>0and h <0.

By the method of separation of variables, we seek for a solution in the form

u(z,t) =T(t) X (), ()

the time part verifies the following differential equation

T
heat flow : Ccth = —\kT (6)
d*T
vibrating string : o= —\*T (7)

The spatial part, X (x), verifies the following regular Sturm-Liouville eigenvalue
problem:
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Here h is a given fixed constant. If h > 0, we call it the “physical” case, while
if h < 0, we call it the “nonphysical” case.



When the regular Sturm-Liouville eigenvalue problem (8)-(10) is solved,
there are five different cases depending on the value of the parameter h in the
boundary condition.

In physical case, there are two cases. In the nonphysical case, there are only
three cases: If —1 < hL, all the eigenvalues are positive; if hL = —1, there are
no negative eigenvalues, but zero is an eigenvalue; and if hL < —1, there are
still an infinite number of positive eigenvalues, but there is also one negative
one.

For these cases, the eigenvalues and corresponding eigenfunctions are given
below.

Case I. Assume that i > 0. If we solve the equation (8), we find
X (z) = ¢1 cos VAz 4 g sin VA
If we apply the boundary condition X (0) = 0, we find ¢; = 0 and then we have
X (z) = casin vV Az
By differentiating this function, we obtain
X' (z) = caVAcos VAz. (11)

The boundary condition of the third kind implies that
Co (\5 cos VAL + hsin \F)\L) =0.

For ¢y # 0, there exists eigenvalues A for A > 0 such that these eigenvalues

satisfy
VAcos VAL + hsin VAL = 0.

We can not determine these eigenvalues exactly. But, they can be determined
graphically. The eigenfunctions are

X (z) = sin VAz.

Case II. Assume that h = 0. In the equation (11), we apply the condition
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So, we obtain
X'(L) = eV AcosVAL=0
= VAcosVAL=0 (cy #0)

For A > 0, we have eigenvalues

2
—1/2
cosVAL =0 = \ = <(nL/)7T> , n=12,..

The eigenfunctions are sin v/\z.



Similarly, in the nonphysical case, there are only three cases: when —1 <
hL < 0, for A > 0 the eigenfunctions are sin v/A\z. When hL = —1, for A > 0 the
eigenfunctions are sin v/ Az and for A = 0 the eigenfunction is . When hL < —1,
for A > 0 the eigenfunctions are sin v Az and for A < 0 the eigenfunctions are
sinh \/s12z (here s; = —\).



