2.2. Canonical Forms of Equations with Constant Coefficients

Consider the equation given by (1)

$$
\begin{equation*}
L u \equiv A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=G(x, y) \tag{1}
\end{equation*}
$$

If the coefficients in the equation are real constants,

$$
\Delta=B^{2}-4 A C
$$

the discriminant will be constant and the equation is the same type at all points of the region. Thus, for equation (1) characteristic curves satisfying the characteristic equation

$$
A\left(\frac{d y}{d x}\right)^{2}-B\left(\frac{d y}{d x}\right)+C=0
$$

are the two line families defined by the equations

$$
\begin{aligned}
& y-\lambda_{1} x=c_{1}, \\
& y-\lambda_{2} x=c_{2} .
\end{aligned}
$$

Here λ_{1} and λ_{2} are the roots of the algebraic equation $A \lambda^{2}-B \lambda+C=0$ and, c_{1} and c_{2} are arbitrary constants. In this case, the characteristic coordinates of ξ and η will be in the form of following characteristic coordinates

$$
\begin{aligned}
\xi & =y-\lambda_{1} x \\
\eta & =y-\lambda_{2} x
\end{aligned}
$$

Let's give an example for different types of such equations.
Example 1. Obtain the canonical form of the equation $4 u_{x x}+5 u_{x y}+u_{y y}+$ $u_{x}+u_{y}=2$.
Solution: Since $A=4, B=5, C=1$, we have $\Delta=B^{2}-4 A C=9>0$, the equation is hyperbolic type everywhere. Since the characteristic equations are as follows

$$
\frac{d y}{d x}=1 \quad \text { and } \quad \frac{d y}{d x}=\frac{1}{4}
$$

then the characteristic curves are following line families

$$
y=x+c_{1} \quad \text { and } \quad y=\frac{x}{4}+c_{2}
$$

So, under the substitutions

$$
\xi=y-x \quad \text { and } \quad \eta=y-\frac{1}{4} x
$$

we have the canonical form

$$
u_{\xi \eta}=\frac{1}{3} u_{\eta}-\frac{8}{9}
$$

This is the first canonical form of the hyperbolic type equation. If we apply the substitutions

$$
\begin{aligned}
\alpha & =\xi+\eta \\
\beta & =\xi-\eta
\end{aligned}
$$

we find the second canonical form of the same equation as follows

$$
u_{\alpha \alpha}-u_{\beta \beta}=\frac{1}{3} u_{\alpha}-\frac{1}{3} u_{\beta}-\frac{8}{9}
$$

Example 2. Obtain the canonical form of the equation $u_{x x}-4 u_{x y}+4 u_{y y}=$ e^{y}.
Solution: Since $A=1, B=-4, C=4$, we have $\Delta=B^{2}-4 A C=(-4)^{2}-$ $4.4=0$ and the equation is the parabolic type everywhere. The characteristic equation is as follows

$$
\left(\frac{d y}{d x}\right)^{2}+4 \frac{d y}{d x}+4=\left(\frac{d y}{d x}+2\right)^{2}=0
$$

from which, characteristic line is found as

$$
y+2 x=c .
$$

Thus by choosing η arbitrarily, when we apply the substitution

$$
\xi=y+2 x \quad \text { and } \quad \eta=y
$$

we arrive at the canonical form in the form

$$
u_{\eta \eta}=\frac{1}{4} e^{\eta} .
$$

Example 3. Obtain the canonical form of the equation $u_{x x}+u_{x y}+u_{y y}+$ $u_{x}=0$.

Solution: Since $A=1, B=1, C=1$ we have $\Delta=B^{2}-4 A C=-3<0$ and we find that the equation is the elliptic type everywhere. The characteristic equation is as follows

$$
\begin{gathered}
\left(\frac{d y}{d x}\right)^{2}-\frac{d y}{d x}+1=0 \\
\frac{d y}{d x}=\frac{1 \mp \sqrt{1-4}}{2}=\frac{1}{2} \mp i \frac{\sqrt{3}}{2}
\end{gathered}
$$

and characteristic curves are found as

$$
y-\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) x=c_{1} \quad \text { and } \quad y-\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right) x=c_{2}
$$

Thus

$$
\xi=y-\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) x \quad \text { and } \quad \eta=y-\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right) x .
$$

By the help of these complex characteristic coordinates, define

$$
\alpha=\frac{1}{2}(\xi+\eta)=y-\frac{1}{2} x \quad \text { and } \quad \beta=\frac{1}{2 i}(\xi-\eta)=-\frac{\sqrt{3}}{2} x
$$

By applying this change of variable, the canonical form of the given partial differential equation is given by

$$
u_{\alpha \alpha}+u_{\beta \beta}=\frac{2}{3} u_{\alpha}+\frac{2}{\sqrt{3}} u_{\beta} .
$$

