2.4. Surfaces Perpendicular to a Given Family of Surfaces

In this section we will see how to obtain the systems of surfaces orthogonal to a given system of surfaces. Such families are called orthogonal or orthogonal surface families. Given the one-parameter surface family defined by equation

$$
\begin{equation*}
f(x, y, z)=c \tag{1}
\end{equation*}
$$

in three-dimensional space. We find a system of surfaces which cut each of these given surfaces at right angles. Let us assume that the equation of a surface that intersects perpendicularly each of the surfaces in family (1) is given by

$$
\begin{equation*}
z=z(x, y) \tag{2}
\end{equation*}
$$

At any (x, y, z) intersection point, the normal vector

$$
\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

of the surface (1) and the normal vector $\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y},-1\right)$ of the surface (2) is perpendicular to each other; that is, we can write

$$
\frac{\partial f}{\partial x} \frac{\partial z}{\partial x}+\frac{\partial f}{\partial y} \frac{\partial z}{\partial y}-\frac{\partial f}{\partial z}=0
$$

or

$$
\begin{equation*}
f_{x}(x, y, z) p+f_{y}(x, y, z) q=f_{z}(x, y, z) \tag{3}
\end{equation*}
$$

The equation is the partial differential equation of surfaces perpendicular to the family of surfaces given by (1) and Lagrange system corresponding to this equation is given by

$$
\frac{d x}{f_{x}(x, y, z)}=\frac{d y}{f_{y}(x, y, z)}=\frac{d z}{f_{z}(x, y, z)}
$$

The solutions of a first order quasi linear partial differential equation (3) are surfaces perpendicular to each member of the family (1).

Example 1. Find the surface perpendicularly intersecting the family of surfaces with a parameter given by the equation $\left(x^{2}+y^{2}\right) z=c$ and passing through the curve $y^{2}=x, z=0$. Here c is a parameter.

Solution: Let's write the given surface family as

$$
f(x, y, z)=\left(x^{2}+y^{2}\right) z=c
$$

Using f_{x}, f_{y} and f_{z},

$$
f_{x}=2 x z \quad, \quad f_{y}=2 y z \quad, \quad f_{z}=x^{2}+y^{2}
$$

The Lagrange system, which corresponds to the partial differential equation of orthogonal surfaces is given by

$$
\frac{d x}{2 x z}=\frac{d y}{2 y z}=\frac{d z}{x^{2}+y^{2}}
$$

From this, two independent first integrals are as follows

$$
u=\frac{x}{y}=c_{1} \quad, \quad v=x^{2}+y^{2}-2 z^{2}=c_{2}
$$

General equation of surfaces perpendicular to a given family of surfaces are given by

$$
F\left(\frac{x}{y}, x^{2}+y^{2}-2 z^{2}\right)=0
$$

or

$$
x^{2}+y^{2}-2 z^{2}=g\left(\frac{x}{y}\right)
$$

where F and g are arbitrary functions. To find the special surface that passes through the curve $y^{2}=x, z=0$, we write the parametric equation of curve as

$$
y=t, x=t^{2}, z=0
$$

From this, we obtain

$$
\begin{aligned}
c_{1} & =t, \quad c_{2}=t^{2}+t^{4} \\
& \Rightarrow c_{2}=c_{1}^{2}+c_{1}^{4}
\end{aligned}
$$

Thus, the desired surface has the equation

$$
x^{2}+y^{2}-2 z^{2}=\left(\frac{x}{y}\right)^{4}+\left(\frac{x}{y}\right)^{2}
$$

Example 2. Find the surface perpendicularly intersecting the family of surfaces with a parameter given by the equation $z=\operatorname{cxy}\left(x^{2}+y^{2}\right)$. Here c is a parameter.

Solution: Let's write the given surface family as

$$
f(x, y, z)=\frac{x y\left(x^{2}+y^{2}\right)}{z}=\frac{1}{c}
$$

Using f_{x}, f_{y} and f_{z},

$$
f_{x}=\frac{3 x^{2} y+y^{3}}{z} \quad, \quad f_{y}=\frac{3 y^{2} x+x^{3}}{z} \quad, \quad f_{z}=-\frac{x y\left(x^{2}+y^{2}\right)}{z^{2}}
$$

The Lagrange system, which corresponds to the partial differential equation of orthogonal surfaces is given by

$$
\frac{z d x}{3 x^{2} y+y^{3}}=\frac{z d y}{3 y^{2} x+x^{3}}=\frac{-z^{2} d z}{x y\left(x^{2}+y^{2}\right)}
$$

From this, we can write

$$
\begin{aligned}
& \Rightarrow \quad \frac{x z d x+y z d y}{x y\left(3 x^{2}+y^{2}\right)+x y\left(x^{2}+3 y^{2}\right)}=\frac{-z^{2} d z}{x y\left(x^{2}+y^{2}\right)} \\
& \Rightarrow \quad \frac{x z d x+y z d y}{x y\left(4 x^{2}+4 y^{2}\right)}=\frac{-z^{2} d z}{x y\left(x^{2}+y^{2}\right)} \\
& \Rightarrow \quad x z d x+y z d y=-4 z^{2} d z \\
& \Rightarrow \quad x d x+y d y=-4 z d z \\
& \Rightarrow \quad x^{2}+y^{2}+4 z^{2}=c_{1}=u(x, y, z)
\end{aligned}
$$

The second solution is

$$
\begin{aligned}
& \Rightarrow \quad \frac{z d x+z d y}{(x+y)^{3}}=-\frac{z d x-z d y}{(x-y)^{3}} \\
& \Rightarrow \frac{d(x+y)}{(x+y)^{3}}=-\frac{d(x-y)}{(x-y)^{3}} \\
& \Rightarrow \quad \frac{1}{(x+y)^{2}}+\frac{1}{(x-y)^{2}}=c_{2}=v(x, y, z)
\end{aligned}
$$

The general equation of surfaces perpendicular to a given family of surfaces are given by

$$
F\left(x^{2}+y^{2}+4 z^{2}, \frac{1}{(x+y)^{2}}+\frac{1}{(x-y)^{2}}\right)=0
$$

or

$$
\frac{1}{(x+y)^{2}}+\frac{1}{(x-y)^{2}}=g\left(x^{2}+y^{2}+4 z^{2}\right)
$$

where F and g are arbitrary functions.

