Nutrition Physiology-3

Digestion and Absorption of Food

Simge Aykan, PhD

Department of Physiology

March 2021

Absorption Pathways

- Fats and fat soluble nutrients first enter the lympathic system
- Venous drainage passes first, via the hepatic portal vein, to the liver
- In the liver, blood flows through a second capillary network (portal circulation), and porcessed before entering the general circulation
- Water soluble nutrients move directly from the interstitial fluid compartment into intestinal capillaries

Large Intestine

- Concentration
- Absorbtion (ions, water)
- Temporary storage
- Bacteria
- Feces: undigested material that is expelled from the body

Large Intestine

1500 ml chyme/day

 Active transport of Na+ from lumen to extracellular fluid, accompying osmotic absorption of water

Net movement of K+ from blood into the large intestine lumen

- Gastrointestinal reflexes are initiated by:
 - Distention of the wall by the volume of the luminal content
 - Chyme osmolarity (total solute concentration)
 - Chyme acidity
 - Chyme concentrations of specific digestion products like monosaccharides, fatty acids, peptides and amino acids

Enteric Nervous System

- Local neural network
- Submucosal + myenteric plexus
- Synapse with;
 - Other neurons
 - Smooth muscles
 - Glands
 - Epithelial cells
- Myenteric plexus
 smooth muscle activity, motility
- Submucosal plexus → gland function and secretory activity

 Neural reflexes can occur entirely within the tract independen of Central Nervous System (CNS) – short reflexes

- CNS effect by autonomic nervous system
 - Symapthetic and parasympathetic branches enter the intestinal tract and synapse with neurons in both plexuses – *long reflexes*

- Enteroendocrine cells
 - Release hormones
 - Stomach and small intestine
 - One surface is exposed to the lumen (stimulation side)
 - Opposite side secrete hormones to the blood

GI Hormones

- Feedback control system that regulates GI luminal environment
- Affect more than one type of target cell

- Cholecystokinin (CCK)
 - Fatty acids in the small intestine
 - CCK secretion from small intestine
 - CCK stimulates pancreas
 - Increase the secretion of digestive enyzmes
 - Gallblader contraction
 - Relaxation of sphincter
 - Secretion flow into small intestine

Phases of GI control

- Cephalic, gastric, intestinal
- Cephalic:
 - "Head"
 - Sensory receptors in the head are stimulated by sight, smell, taste and chewing (also various emotional states)
 - Efferent pathways mediated by parasympathetic neurons in vagus nerve
 - Vagus → GI nerve plexus → secretory and contractile activity

Phases of GI control

- Gastric
 - Stimuli in stomach
 - Distention, acidity, amino acids and peptides
 - Both short and long neural reflexes
 - Release of gastrin

Phases of GI control

- Intestinal
- Stimuli in small intestine
 - Distension, acidity, osmolarity, various digestive products
 - Both short and long neural reflexes
 - Release of secretin, CCK,GIP

Regulation of Absorptive and Postabsorptive States

 Absorptive state: ingested nutrients enter the blood from the gastrointestinal tract

 Postabsorptive state: the gastrointestinal tract is empty of nutrients and the body's own stores must supply energy

Fasting: 24 hour without eating

Regulation of Absorptive and Postabsorptive States

- Insulin → Beta cells
 - Increased during absorptive state
 - Decreased during postabsorptive state
 - Insertion of GLUT-4
 - High glucose transport into the cells
- Glucagon → Alpha cells
 - Increased if circulating concentraation of glucose decrease
 - Increase the plasma concentration of glucose and ketones to prevent hypoglycemia

Regulation of Apetite

- Digestion is controlled by the nervous system and hormones
 - Food triggers nervous system responses
 - The thought of food stimulates the hypothalamus, which controls many involuntary responses of the nervous system
 - The hypothalamus stimulates the nervous pathways that prepare the digestive system to process food
 - Salivation, for example, increases and the stomach produces more acid and protective mucus

Regulation of Apetite

- Hormones regulate hunger
 - Two appetite-regulating hormones discovered in the 1990s are leptin and ghrelin
 - Leptin is a peptide secreted by fat cells
 - When calorie intake is restricted, leptin in the bloodstream is reduced, stimulating the hypothalamus to trigger hunger
 - Ghrelin is a peptide secreted by gastric gland cells in the stomach lining
 - An increase in circulating ghrelin occurs prior to mealtime, stimulating hunger via the hypothalamus

Regulation of Appetite

- Ghrelin → hunger
- Insulin → supression of appetite
- Leptin → supresses appetite
- Peptide YY → supresses the appetite