2.6. Compatible Systems

Let’s consider the first order partial differential equation system

F(z,y,2,0,9) =0 , G(z,9,2,p,q) =0. (1)

If the equations F(z,y,z2,p,q) = 0 and G(z,y,2,p,q) = 0 have common solu-
tions, the system (1) is called the compatible system. If
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is provided, in that case, the two equations of system (1) are independent from
each other, and from these two equations, the expressions p and ¢ can be ob-
tained explicitly as

p:p(ac,y7z) ) q:q(ﬂc,y,z) (3)

in terms of z,y, z. Therefore, the compatibility of the system (1) is equivalent
to integrability of the system of equations (3). That is to say
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or in other words the equation
p(l’,y,Z)dQ?—‘rq(.’L‘,y,Z)dy—dZ:0 (4)

must be a exact differential that can be integrated. On the other hand, let’s
remember that the necessary and sufficient condition for a differential expression
in the form of

P(z,y,z)dz + Q(x,y, 2)dy + R(x,y, 2)dz

to be exact differential, i.e. to be integrable, is to satisfy identity which is given

below.
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In this identity,
P=p, @=q , R=-1

is taken, i order to integrate (4),
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must be satisfied. Now, considering that p and ¢ are functions of x,y, z, if we
take derivatives from two equations of (1) with respect to x, we get the equations
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if we take derivatives with respect to y, we have
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If we take derivatives with respect to z, we obtain
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If solving e from (6), considering that J # 0, we have
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Similarly, if — 3 from (7) is solved, we can write
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Finally, if 9 and 5, ¢ solved from the two equations of (8), we get
Op  FG,—GF; dq _ F.G,-G.F, (11)
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If the expressions (9), (10) and (11) are replaced in (5),

p(F.Gp — G,F)) —q(F,G, — G F,) — (F,Gy — GgFy) + (F,G, — G.F,) =0

(12)
is obtained and this statement is the compatibility condition of the (1) system.
The left side of the expression (12) can be shown as
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The expression [F, G] is called the crochet of F' and G. Therefore, if the system

(1) is a compatible system, the crochet of F' and G must be equal to zero. That
is, the condition

[F,G] = (13)

[F,G]=0

is the compatibility condition.
Example 1. Show that the equations

zp=yq, (1+2°y°) (zp+yq) =2zyz

are compatible and solve them.



Solution: In the given example, we take

F=1+2*%) (a2p+yq) —22yz=0 , G=ap—yq=0.

Since
86((?,5)) - ?1, gp = 2z%y° (px + qy) — 2zy>z
Sew = B oG |=
(?9(5:%) N % gg = 2%y’ (pr + qy) + 2zyz
we can write
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= 22%y% (pz + qy) — 2zyz + p (—227y)
—22%y? (pz + qu) + 2zyz + q (22y°)
2xy(yq — xp)

= 0,

which says that the system is compatible. If we solve the system according to
p and ¢, we have
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and we obtain
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By integrating this last expression, common solution is found

d d
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Here c is an arbitrary constant.



