2.6. Compatible Systems

Let's consider the first order partial differential equation system

$$
\begin{equation*}
F(x, y, z, p, q)=0 \quad, \quad G(x, y, z, p, q)=0 \tag{1}
\end{equation*}
$$

If the equations $F(x, y, z, p, q)=0$ and $G(x, y, z, p, q)=0$ have common solutions, the system (1) is called the compatible system. If

$$
\begin{equation*}
J=\frac{\partial(F, G)}{\partial(p, q)}=F_{p} G_{q}-G_{p} F_{q} \neq 0 \tag{2}
\end{equation*}
$$

is provided, in that case, the two equations of system (1) are independent from each other, and from these two equations, the expressions p and q can be obtained explicitly as

$$
\begin{equation*}
p=p(x, y, z) \quad, \quad q=q(x, y, z) \tag{3}
\end{equation*}
$$

in terms of x, y, z. Therefore, the compatibility of the system (1) is equivalent to integrability of the system of equations (3). That is to say

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y=p d x+q d y
$$

or in other words the equation

$$
\begin{equation*}
p(x, y, z) d x+q(x, y, z) d y-d z=0 \tag{4}
\end{equation*}
$$

must be a exact differential that can be integrated. On the other hand, let's remember that the necessary and sufficient condition for a differential expression in the form of

$$
P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z
$$

to be exact differential, i.e. to be integrable, is to satisfy identity which is given below.

$$
P\left(\frac{\partial Q}{\partial z}-\frac{\partial R}{\partial y}\right)+Q\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right)+R\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right) \equiv 0
$$

In this identity,

$$
P=p, \quad Q=q \quad, \quad R=-1
$$

is taken, i order to integrate (4),

$$
\begin{equation*}
p \frac{\partial q}{\partial z}-q \frac{\partial p}{\partial z}-\left(\frac{\partial p}{\partial y}-\frac{\partial q}{\partial x}\right)=0 \tag{5}
\end{equation*}
$$

must be satisfied. Now, considering that p and q are functions of x, y, z, if we take derivatives from two equations of (1) with respect to x, we get the equations

$$
\begin{equation*}
F_{x}+F_{p} \frac{\partial p}{\partial x}+F_{q} \frac{\partial q}{\partial x}=0 \quad, \quad G_{x}+G_{p} \frac{\partial p}{\partial x}+G_{q} \frac{\partial q}{\partial x}=0 \tag{6}
\end{equation*}
$$

if we take derivatives with respect to y, we have

$$
\begin{equation*}
F_{y}+F_{p} \frac{\partial p}{\partial y}+F_{q} \frac{\partial q}{\partial y}=0 \quad, \quad G_{y}+G_{p} \frac{\partial p}{\partial y}+G_{q} \frac{\partial q}{\partial y}=0 \tag{7}
\end{equation*}
$$

If we take derivatives with respect to z, we obtain

$$
\begin{equation*}
F_{z}+F_{p} \frac{\partial p}{\partial z}+F_{q} \frac{\partial q}{\partial z}=0 \quad, \quad G_{z}+G_{p} \frac{\partial p}{\partial z}+G_{q} \frac{\partial q}{\partial z}=0 \tag{8}
\end{equation*}
$$

If solving $\frac{\partial q}{\partial x}$ from (6), considering that $J \neq 0$, we have

$$
\begin{equation*}
\frac{\partial q}{\partial x}=\frac{F_{x} G_{p}-G_{x} F_{p}}{J} \tag{9}
\end{equation*}
$$

Similarly, if $\frac{\partial p}{\partial y}$ from (7) is solved, we can write

$$
\begin{equation*}
\frac{\partial p}{\partial y}=\frac{F_{q} G_{y}-G_{q} F_{y}}{J} \tag{10}
\end{equation*}
$$

Finally, if $\frac{\partial p}{\partial z}$ and $\frac{\partial q}{\partial z}$ are solved from the two equations of (8), we get

$$
\begin{equation*}
\frac{\partial p}{\partial z}=\frac{F_{q} G_{z}-G_{q} F_{z}}{J} \quad, \quad \frac{\partial q}{\partial z}=\frac{F_{z} G_{p}-G_{z} F_{p}}{J} \tag{11}
\end{equation*}
$$

If the expressions (9), (10) and (11) are replaced in (5),

$$
\begin{equation*}
p\left(F_{z} G_{p}-G_{z} F_{p}\right)-q\left(F_{q} G_{z}-G_{q} F_{z}\right)-\left(F_{q} G_{y}-G_{q} F_{y}\right)+\left(F_{x} G_{p}-G_{x} F_{p}\right) \equiv 0 \tag{12}
\end{equation*}
$$

is obtained and this statement is the compatibility condition of the (1) system. The left side of the expression (12) can be shown as

$$
\begin{equation*}
[F, G] \equiv \frac{\partial(F, G)}{\partial(x, p)}+p \frac{\partial(F, G)}{\partial(z, p)}+\frac{\partial(F, G)}{\partial(y, q)}+q \frac{\partial(F, G)}{\partial(z, q)} \tag{13}
\end{equation*}
$$

The expression $[F, G]$ is called the crochet of F and G. Therefore, if the system (1) is a compatible system, the crochet of F and G must be equal to zero. That is, the condition

$$
[F, G] \equiv 0
$$

is the compatibility condition.
Example 1. Show that the equations

$$
x p=y q, \quad\left(1+x^{2} y^{2}\right)(x p+y q)=2 x y z
$$

are compatible and solve them.

Solution: In the given example, we take

$$
F=\left(1+x^{2} y^{2}\right)(x p+y q)-2 x y z=0 \quad, \quad G=x p-y q=0
$$

Since

$$
\begin{aligned}
\frac{\partial(F, G)}{\partial(x, p)} & =\left|\begin{array}{ll}
F_{x} & G_{x} \\
F_{p} & G_{p}
\end{array}\right|=2 x^{2} y^{2}(p x+q y)-2 x y z \\
\frac{\partial(F, G)}{\partial(z, p)} & =\left|\begin{array}{ll}
F_{z} & G_{z} \\
F_{p} & G_{p}
\end{array}\right|=-2 x^{2} y \\
\frac{\partial(F, G)}{\partial(y, q)} & =\left|\begin{array}{ll}
F_{y} & G_{y} \\
F_{q} & G q
\end{array}\right|=-2 x^{2} y^{2}(p x+q y)+2 x y z \\
\frac{\partial(F, G)}{\partial(z, q)} & =\left|\begin{array}{ll}
F_{z} & G_{z} \\
F_{q} & G_{q}
\end{array}\right|=2 x y^{2}
\end{aligned}
$$

we can write

$$
\begin{aligned}
{[F, G]=} & \frac{\partial(F, G)}{\partial(x, p)}+p \frac{\partial(F, G)}{\partial(z, p)}+\frac{\partial(F, G)}{\partial(y, q)}+q \frac{\partial(F, G)}{\partial(z, q)} \\
= & 2 x^{2} y^{2}(p x+q y)-2 x y z+p\left(-2 x^{2} y\right) \\
& -2 x^{2} y^{2}(p x+q y)+2 x y z+q\left(2 x y^{2}\right) \\
= & 2 x y(y q-x p) \\
\equiv & 0
\end{aligned}
$$

which says that the system is compatible. If we solve the system according to p and q, we have

$$
\left.\begin{array}{c}
x p-y q=0 \\
x p+y q=\frac{2 x y z}{1+x^{2} y^{2}}
\end{array}\right\} \Rightarrow p=\frac{y z}{1+x^{2} y^{2}} \quad, \quad q=\frac{x z}{1+x^{2} y^{2}}
$$

and we obtain

$$
\begin{aligned}
d z & =p d x+q d y=\frac{y z}{1+x^{2} y^{2}} d x+\frac{x z}{1+x^{2} y^{2}} d y \\
& \Rightarrow \quad \frac{d z}{z}=\frac{y d x+x d y}{1+(x y)^{2}}=\frac{d(x y)}{1+(x y)^{2}}
\end{aligned}
$$

By integrating this last expression, common solution is found

$$
\begin{aligned}
\frac{d z}{z} & =\frac{d(x y)}{1+(x y)^{2}} \Rightarrow \ln z=\arctan (x y)+\ln c \\
& \Rightarrow z=c e^{\arctan (x y)}
\end{aligned}
$$

Here c is an arbitrary constant.

