2.8. First-order special type partial differential equations

In this section, we will examine the special types of first-order partial differential equations that can be easily solved with the Charpit method.

A. Equations containing only p and q :

Consider the type equations which do not explicitly include x, y, z variables, but only partial derivatives $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$

$$
\begin{equation*}
F(p, q)=0 \tag{1}
\end{equation*}
$$

For an equation of type (1), we can write

$$
F_{x}=F_{y}=F_{z}=0
$$

so we can see that the corresponding Charpit auxiliary equations are given by

$$
\frac{d x}{F_{p}}=\frac{d y}{F_{q}}=\frac{d z}{p F_{p}+q F_{q}}=\frac{d p}{0}=\frac{d q}{0}
$$

From the last two equations, we have $d p=0$ and $d q=0$. Using $d p=0$, we have

$$
\begin{equation*}
p=a \tag{2}
\end{equation*}
$$

The corresponding value of q is from (1) and (2), so we get

$$
F(a, q)=0 \Rightarrow \quad q=Q(a)
$$

Thus an complete integral of equation (1) can be found by integrating

$$
d z=p d x+q d y=a d x+Q(a) d y
$$

and we obtain

$$
\begin{equation*}
z=a x+Q(a) y+b \tag{3}
\end{equation*}
$$

This complete integral with a and b constants indicate a family of planes.
Remark: Starting from $d q=0$, a solution can be obtained by taking $q=a$.
Example 1. Find a complete integral of the equation $p q^{2}-q^{3}+\sin q=0$.
Solution: The given partial differential equation is of a special type with only p and q. For this equation which is first degree with respect to p and third degree with respect to q, it is more appropriate to take

$$
\text { from } d q=0 \Rightarrow \quad q=a
$$

In this case, the value of p will be

$$
p a^{2}-a^{3}+\sin a=0 \quad \Rightarrow \quad p=\frac{a^{3}-\sin a}{a^{2}}
$$

By integrating

$$
d z=p d x+q d y=\frac{a^{3}-\sin a}{a^{2}} d x+a d y
$$

we obtain

$$
z=\left(\frac{a^{3}-\sin a}{a^{2}}\right) x+a y+b
$$

where a and b are arbitrary constants.

B. Equations without independent variables:

For such partial differential equations expressed as

$$
\begin{equation*}
F(z, p, q)=0 \tag{4}
\end{equation*}
$$

we can write $F_{x}=0$ ve $F_{y}=0$ so that the corresponding Charpit auxiliary equations are in the form of

$$
\frac{d x}{F_{p}}=\frac{d y}{F_{q}}=\frac{d z}{p F_{p}+q F_{q}}=\frac{d p}{-p F_{z}}=\frac{d q}{-q F_{z}}
$$

From the last two equations, the first integral is given by

$$
\begin{equation*}
p=a q \tag{5}
\end{equation*}
$$

After solving p and q in terms of z from (4) and (5) and substituting $d z=$ $p d x+q d y$, the equation is integrated and we obtain a two-parameter complete integral of (4).

Example 2. Find a complete integral of the equation $z=p^{2}-q^{2}$.
Solution: The given partial differential equation is a special type equation which does not contain independent variables, and a first integral from the corresponding Charpit auxiliary equations is $p=a q$. If p and q are solved from this first integral equation and the given partial differential equation, we have

$$
\begin{gathered}
\left.\begin{array}{c}
z=p^{2}-q^{2} \\
p=a q
\end{array}\right\} \Rightarrow q= \pm \sqrt{\frac{z}{a^{2}-1}} \quad, \quad p= \pm a \sqrt{\frac{z}{a^{2}-1}} \\
d z=p d x+q d y= \pm \sqrt{\frac{z}{a^{2}-1}}(a d x+d y), \quad \sqrt{\frac{a^{2}-1}{z}} d z= \pm(a d x+d y) .
\end{gathered}
$$

By the integration of both sides, we obtain complete integral as follows

$$
\left(2 \sqrt{z\left(a^{2}-1\right)}+b\right)^{2}=(a x+y)^{2}
$$

C. Equations that can be separated by their variables:

If a first-order partial differential equation can be written as

$$
\begin{equation*}
f(x, p)=g(y, q) \tag{6}
\end{equation*}
$$

it is said to be of the separable type to its variables. If we write equation (6) as

$$
F(x, y, z, p, q)=f(x, p)-g(y, q)=0
$$

we have

$$
F_{x}=f_{x} \quad, \quad F_{y}=-g_{y} \quad, \quad F_{z}=0, \quad F_{p}=f_{p} \quad, \quad F_{q}=-g_{q}
$$

for the corresponding Charpit auxiliary equations expressed as follows

$$
\frac{d x}{f_{p}}=\frac{d y}{-g_{q}}=\frac{d z}{p f_{p}-q g_{q}}=\frac{d p}{-f_{x}}=\frac{d q}{g_{y}}
$$

We obtain

$$
\begin{equation*}
f_{x} d x+f_{p} d p=0 \tag{7}
\end{equation*}
$$

from the first and fourth equations. Since the function f depends only on x and p, the expression (7) is an ordinary exact differential equation with respect to x and p. With the help of the

$$
d f(x, p)=f_{x} d x+f_{p} d p=0
$$

we have the solution to (7)

$$
\begin{equation*}
f(x, p)=a \tag{8}
\end{equation*}
$$

where a is an arbitrary constant. From (6) and (8), we have

$$
\begin{equation*}
g(y, q)=a \tag{9}
\end{equation*}
$$

Thus, from (8) and (9), we obtain

$$
p=p(x, a) \quad \text { and } \quad q=q(y, a)
$$

respectively. By putting them in

$$
d z=p(x, a) d x+q(y, a) d y
$$

and integrating the last equality, we obtain the complete integral of equation (6) as follows

$$
z=\int p(x, a) d x+\int q(y, a) d y+b
$$

Example 3. Find a complete integral of the equation $p^{2} y\left(1+x^{2}\right)=q x^{2}$.
Solution: Since the given partial differential equation can be written as

$$
\frac{p^{2}\left(1+x^{2}\right)}{x^{2}}=\frac{q}{y}
$$

it is a special type that can be separated into variables. Choosing

$$
f(x, p)=\frac{p^{2}\left(1+x^{2}\right)}{x^{2}}=a^{2} \quad, \quad g(y, q)=\frac{q}{y}=a^{2}
$$

we have

$$
p=\frac{a x}{\sqrt{1+x^{2}}} \quad, \quad q=a^{2} y
$$

and

$$
d z=p d x+q d y=\frac{a x}{\sqrt{1+x^{2}}} d x+a^{2} y d y
$$

By integrating last expression, the desired complete integral is obtained as follows.

$$
z=a \sqrt{1+x^{2}}+\frac{1}{2} a^{2} y^{2}+b
$$

D. Clairaut Equation

If a first order partial differential equation can be expressed as

$$
\begin{equation*}
z=x p+y q+f(p, q) \tag{10}
\end{equation*}
$$

it is called the Clairaut type equation. If we write the equation (10) as

$$
F(x, y, z, p, q)=x p+y q+f(p, q)-z=0
$$

we have corresponding Charpit auxiliary equations as

$$
\begin{gathered}
F_{x}=p, \quad F_{y}=q, \quad F_{z}=-1, \quad F_{p}=x+f_{p} \quad, \quad F_{q}=y+f_{q} \\
\frac{d x}{x+f_{p}}=\frac{d y}{y+f_{q}}=\frac{d z}{p x+q y+p f_{p}+q f_{q}}=\frac{d p}{0}=\frac{d q}{0}
\end{gathered}
$$

From the last two equations, we find

$$
d p=0 \Rightarrow p=a \quad \text { and } \quad d q=0 \Rightarrow q=b
$$

and If these values of p and q are replaced in (10), the complete integral

$$
\begin{equation*}
z=a x+b y+f(a, b) \tag{11}
\end{equation*}
$$

is obtained. A partial differential equation of type (10) usually also has a singular integral. This singular integral is the envelope of the family of planes defined by (11).

Example 4. Find a complete integral $p q z=p^{2}\left(x q+p^{2}\right)+q^{2}\left(y p+q^{2}\right)$.
Solution: Since the given partial differential equation can be written as

$$
\begin{aligned}
z & =\frac{p}{q}\left(x q+p^{2}\right)+\frac{q}{p}\left(y p+q^{2}\right) \\
& \Rightarrow z=x p+y q+\frac{p^{3}}{q}+\frac{q^{3}}{p}
\end{aligned}
$$

it is a Clairaut type equation. By inserting $p=a, q=b$, we have the complete integral

$$
z=a x+b y+\frac{a^{3}}{b}+\frac{b^{3}}{a} .
$$

