2.7. Charpit Method

A method for solving the first order partial differential equation

$$
\begin{equation*}
F(x, y, z, p, q)=0 \tag{1}
\end{equation*}
$$

is given by Charpit. The basis of this method is based on finding a second equation which is given below

$$
\begin{equation*}
G(x, y, z, p, q, a)=0 \tag{2}
\end{equation*}
$$

which is compatible with equation (1) and contains an arbitrary constant a. The compatibility of equations (1) and (2) will require the identity

$$
\begin{equation*}
p\left(F_{z} G_{p}-G_{z} F_{p}\right)-q\left(F_{q} G_{z}-G_{q} F_{z}\right)-\left(F_{q} G_{y}-G_{q} F_{y}\right)+\left(F_{x} G_{p}-G_{x} F_{p}\right) \equiv 0 \tag{3}
\end{equation*}
$$

which is given in the previous section. Considering that G is an unknown function, identity (3) can be written in another way.as follows

$$
\begin{equation*}
F_{p} \frac{\partial G}{\partial x}+F_{q} \frac{\partial G}{\partial y}+\left(p F_{p}+q F_{q}\right) \frac{\partial G}{\partial z}-\left(F_{x}+p F_{z}\right) \frac{\partial G}{\partial p}-\left(F_{y}+q F_{z}\right) \frac{\partial G}{\partial q}=0 \tag{4}
\end{equation*}
$$

This equation is a Lagrange linear equation in which x, y, z, p, q act as independent variables. Then, our problem is reduced to finding a first integral in the form of (2) from the auxiliary system

$$
\begin{equation*}
\frac{d x}{F_{p}}=\frac{d y}{F_{q}}=\frac{d z}{p F_{p}+q F_{q}}=\frac{d p}{-\left(F_{x}+p F_{z}\right)}=\frac{d q}{-\left(F_{y}+q F_{z}\right)} \tag{5}
\end{equation*}
$$

of the equation (4). It is not necessary to use all of the equations (5) for a first integral to be found from system (5), known as Charpit equations. However, in the first integral we will find, at least one of p or q must be found. Later, from the compatible system formed by equation (2) and equation (1),

$$
p=p(x, y, z, a) \quad, \quad q=q(x, y, z, a)
$$

are solved and

$$
\begin{equation*}
d z=p(x, y, z, a) d x+q(x, y, z, a) d y \tag{6}
\end{equation*}
$$

is integrated. When equation (6) is integrated, a solution containing two arbitrary parameters

$$
f(x, y, z, a, b)=0
$$

is obtained. This solution is a complete integral of equation (1).
Example 1. Find a complete integral of the equation $p^{2} x+q^{2} y=z$.
Solution: If we write the given equation as

$$
F(x, y, z, p, q)=p^{2} x+q^{2} y-z=0
$$

we have

$$
F_{x}=p^{2} \quad, \quad F_{y}=q^{2} \quad, \quad F_{z}=-1 \quad, \quad F_{p}=2 p x \quad, \quad F_{q}=2 q y
$$

The corresponding auxiliary system, that is, the Charpit equations are given as follows

$$
\frac{d x}{2 p x}=\frac{d y}{2 q y}=\frac{d z}{2\left(p^{2} x+q^{2} y\right)}=\frac{d p}{-p^{2}+p}=\frac{d q}{-q^{2}+q}
$$

Therefore, a first integral containing at least one of p and q can be obtained as follows:

$$
\frac{p^{2} d x+2 p x d p}{2 p^{3} x+2 p x\left(p-p^{2}\right)}=\frac{q^{2} d y+2 q y d q}{2 q^{3} y+2 q y\left(q-q^{2}\right)} \quad, \quad \frac{d\left(p^{2} x\right)}{p^{2} x}=\frac{d\left(q^{2} y\right)}{q^{2} y}
$$

by integrating both sides, we get

$$
p^{2} x=a q^{2} y
$$

This equation in which a is arbitrary constant and the first equation form an compatible system. If we solve p and q from this system, we have

$$
\left.\begin{array}{c}
p^{2} x+q^{2} y=z \\
p^{2} x=a q^{2} y
\end{array}\right\} \Rightarrow \quad p=\left\{\frac{a z}{(1+a) x}\right\}^{1 / 2} \quad, \quad q=\left\{\frac{z}{(1+a) y}\right\}^{1 / 2}
$$

and If they are put in place in the equation $d z=p d x+q d y$, we obtain

$$
d z=\left\{\frac{a z}{(1+a) x}\right\}^{1 / 2} d x+\left\{\frac{z}{(1+a) y}\right\}^{1 / 2} d y
$$

This expression is written as

$$
\left(\frac{1+a}{z}\right)^{1 / 2} d z=\left(\frac{a}{x}\right)^{1 / 2} d x+\left(\frac{1}{y}\right)^{1 / 2} d y
$$

and if both sides are integrated, we have

$$
\sqrt{(1+a) z}=\sqrt{a x}+\sqrt{y}+b
$$

This is a complete integral of the given equation where a and b are parameters.
Example 2. Find a complete integral of the equation

$$
p q+x(2 y+1) p+\left(y^{2}+y\right) q-(2 y+1) z=0
$$

and obtain a singular integral, if any.
Solution: If the given equation is written as

$$
F(x, y, z, p, q)=p q+x(2 y+1) p+\left(y^{2}+y\right) q-(2 y+1) z=0
$$

we have

$$
\begin{aligned}
& F_{x}=(2 y+1) p, F_{y}=2 x p+(2 y+1) q-2 z, F_{z}=-(2 y+1), \\
& F_{p}=q+x(2 y+1), \quad F_{q}=p+y^{2}+y
\end{aligned}
$$

In the corresponding auxiliary system, since the denominator of $d p$ is

$$
F_{x}+p F_{z}=0
$$

from $d p=0, p=a$ is obtained as a first integral of the system. Substituting this value of $p=a$ into the given equation and solving q, we can write

$$
q=\frac{(2 y+1)(z-a x)}{y^{2}+y+a}
$$

From $d z=p d x+q d y$, we have

$$
d z=a d x+\frac{(2 y+1)(z-a x)}{y^{2}+y+a} d y
$$

or in other form, we obtain

$$
\frac{d z-a d x}{z-a x}=\frac{(2 y+1)}{y^{2}+y+a} d y
$$

By integrating both sides, we find

$$
\ln (z-a x)=\ln \left(y^{2}+y+a\right)+\ln b,
$$

from which it follows

$$
z=a x+\left(y^{2}+y+a\right) b .
$$

Thus, the desired complete integral is obtained. If the derivatives are taken from this solution according to the parameters a and b, we have

$$
x+b=0 \quad, \quad y^{2}+y+a=0
$$

When a and b are eliminated among the last three equations, we obtain

$$
z=-x\left(y^{2}+y\right)
$$

This equation is the envelope of the family of two-parameter surface and is a singular integral of the given partial differential equation.

