3.1. Second Order Linear Partial Differential Equations With Constant Coefficients

General form of second order linear partial differential equations with two independent variables x and y is given

$$
\begin{equation*}
A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=G \tag{1}
\end{equation*}
$$

where the coefficients A, B, C, D, E, F and G are functions of x and y. Except for some special cases, it is not always possible to obtain the general solution of (1) as in the first order linear partial differential equations.

As a special case, we will consider equation

$$
\begin{equation*}
a u_{x x}+b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f u=0 \tag{2}
\end{equation*}
$$

where a, b, c, d, e and f are constants, all a, b and c must not be zero simultaneously. In terms of partial derivative operators

$$
D_{x}=\frac{\partial}{\partial x} \quad, \quad D_{y}=\frac{\partial}{\partial y}
$$

by using linear operator

$$
L=a D_{x}^{2}+b D_{x} D_{y}+c D_{y}^{2}+d D_{x}+e D_{y}+f
$$

we can write (2) as

$$
\begin{equation*}
L(u)=0 \tag{3}
\end{equation*}
$$

In (3), let's consider the polynomial

$$
P(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+f
$$

obtained by replacing D_{x} and D_{y} with x and y, respectively and suppose that the polynomial $P(x, y)$ can be factored out as

$$
P(x, y)=\left(a_{1} x+b_{1} y+c_{1}\right)\left(a_{2} x+b_{2} y+c_{2}\right)
$$

In this case, taking into the consideration L_{1} and L_{2}

$$
\begin{equation*}
L_{1}=a_{1} D_{x}+b_{1} D_{y}+c_{1} \quad, \quad L_{2}=a_{2} D_{x}+b_{2} D_{y}+c_{2} \tag{4}
\end{equation*}
$$

the operator L can be written as factored as

$$
L=L_{1} \cdot L_{2}
$$

Since all the coefficients of L_{1} and L_{2} are constants, we can write

$$
L_{1} \cdot L_{2}=L_{2} \cdot L_{1}
$$

so we have

$$
\begin{equation*}
L=L_{1} \cdot L_{2}=L_{2} \cdot L_{1} \tag{5}
\end{equation*}
$$

In such a case, the L operator is said to be reducible.
If L is reducible, the general solution of equation (3) containing two arbitrary functions can be obtained explicitly in terms of solutions of the first order equations

$$
L_{1}(u)=0 \quad \text { and } \quad L_{2}(u)=0
$$

Let L_{1} and L_{2} be given as in (4), with $L_{1} \neq L_{2}$. Let the general solution of $L_{1}(u)=0$ be $u=u_{1}$ and the general solution of $L_{2}(u)=0$ be $u=u_{2}$. If $u=u_{1}+u_{2}$, because of the linearity of L and (5), we can write

$$
\begin{align*}
L(u) & =L\left(u_{1}+u_{2}\right)=L\left(u_{1}\right)+L\left(u_{2}\right) \\
& =L_{2} L_{1}\left(u_{1}\right)+L_{1} L_{2}\left(u_{2}\right)=0 \tag{6}
\end{align*}
$$

This shows that the function $u=u_{1}+u_{2}$ implements equation (3).
On the other hand,

$$
\begin{equation*}
L_{1}\left(u_{1}\right)=\left(a_{1} D_{x}+b_{1} D_{y}+c_{1}\right) u_{1}=a_{1} \frac{\partial u_{1}}{\partial x}+b_{1} \frac{\partial u_{1}}{\partial y}+c_{1} u_{1}=0 \tag{7}
\end{equation*}
$$

Lagrange system corresponding to the first order linear partial differential equation is given by

$$
\frac{d x}{a_{1}}=\frac{d y}{b_{1}}=\frac{d u_{1}}{-c_{1} u_{1}}
$$

From the first two equations of this system, we obtain

$$
b_{1} x-a_{1} y=a
$$

If $a_{1} \neq 0$, from the first and third equations of the system, we have

$$
\ln u_{1}=-\frac{c_{1}}{a_{1}} x+\ln b \quad \text { or } \quad u_{1}=b \exp \left(-\frac{c_{1}}{a_{1}} x\right)
$$

Here, the general solution of (7) is found by inserting $b=f_{1}(a)$,

$$
\begin{equation*}
u_{1}(x, y)=e^{-\frac{c_{1}}{a_{1}} x} f_{1}\left(b_{1} x-a_{1} y\right) \tag{8}
\end{equation*}
$$

where f_{1} is an arbitrary function.
If $a_{1}=0$ in (7) then $b_{1} \neq 0$ since both a_{1} and b_{1} cannot be zero simultaneously. In this case, the solution (8) is replaced by

$$
\begin{equation*}
u_{1}(x, y)=e^{-\frac{c_{1}}{b_{1}} y} f_{1}(x) \tag{9}
\end{equation*}
$$

Similarly, if $a_{2} \neq 0$, the solution of $L_{2}\left(u_{2}\right)=0$ is

$$
\begin{equation*}
u_{2}(x, y)=e^{-\frac{c_{2}}{a_{2}} x} f_{2}\left(b_{2} x-a_{2} y\right) \tag{10}
\end{equation*}
$$

and If $a_{2}=0\left(\right.$ since $\left.b_{2} \neq 0\right)$, we get

$$
\begin{equation*}
u_{2}(x, y)=e^{-\frac{c_{2}}{b_{2}} y} f_{2}(x) \tag{11}
\end{equation*}
$$

where f_{2} is an arbitrary function.
Thus, if $a_{1} a_{2} \neq 0$, the general solution of (3) is given by

$$
\begin{equation*}
u(x, y)=e^{-\frac{c_{1}}{a_{1}} x} f_{1}\left(b_{1} x-a_{1} y\right)+e^{-\frac{c_{2}}{a_{2}} x} f_{2}\left(b_{2} x-a_{2} y\right) \tag{12}
\end{equation*}
$$

If $a_{1}=0$ or $a_{2}=0$, the terms corresponding to u_{1} and u_{2} in (12) will be replaced by (9) or (11), respectively.

To obtain the general solution of the non-homogeneous partial differential equation $L(u)=G$, it is sufficient to find any particular solution of the nonhomogeneous equation and add it to the solution (12).

Example 1. Find the general solution of the equation

$$
u_{x x}-u_{y y}=5 \cos (2 x+y)-3 \sin (2 x+y)
$$

Solution: The linear operator

$$
L=D_{x}^{2}-D_{y}^{2}
$$

for the given equation can be written as the product of L_{1} and L_{2},

$$
L_{1}=D_{x}-D_{y} \quad \text { and } \quad L_{2}=D_{x}+D_{y}
$$

For the operator L_{1}

$$
L_{1}(u)=\left(D_{x}-D_{y}\right) u=0
$$

we have general solution of first order homogen linear partial differential equation $L_{1}(u)=0$ as follows

$$
u_{1}(x, y)=f(x+y)
$$

and for the operator L_{2}, general solution of the equation

$$
L_{2}(u)=\left(D_{x}+D_{y}\right) u=0
$$

is given by

$$
u_{2}(x, y)=g(x-y)
$$

Thus, the general solution of the homogeneous equation $L(u)=0$ corresponding to the given equation is found in the form

$$
u_{h}=f(x+y)+g(x-y)
$$

where f and g are arbitrary twice differentiable functions.
Now let's find a particular solution $u_{p}(x, y)$ for the non-homogeneous equation

$$
L(u)=5 \cos (2 x+y)-3 \sin (2 x+y)
$$

Let's use the method of undetermined coefficients for this equation and let's look for a particular solution in the form

$$
u_{p}(x, y)=A \cos (2 x+y)+B \sin (2 x+y)
$$

If we differentiate this function with respect to x and y, and then we write in the given equation, by comparing similar terms we determine the coefficients A and B as

$$
A=-\frac{5}{3}, B=1
$$

Thus, the general solution u of the given partial differential equation can be written

$$
\begin{gathered}
u=u_{h}+u_{p} \\
u=f(x+y)+g(x-y)-\frac{5}{3} \cos (2 x+y)+\sin (2 x+y)
\end{gathered}
$$

where f and g are arbitrary twice differentiable functions.

Finding the solution for $L_{1}=L_{2}$:

Now let's consider the case $L_{1}=L_{2}$, that is, the L operator is composed of repeated factors. In this case, at least one of a_{1} and b_{1} is nonzero, we have

$$
L_{1}=L_{2}=a_{1} D_{x}+b_{1} D_{y}+c_{1}
$$

and we need to find the general solution to the equation.

$$
\begin{equation*}
L(u)=L_{1}^{2}(u)=L_{1}\left[L_{1}(u)\right]=\left(a_{1} D_{x}+b_{1} D_{y}+c_{1}\right)^{2} u=0 \tag{13}
\end{equation*}
$$

Let's assume $a_{1} \neq 0$. If $L_{1}(u)=w$, for u to have a solution of equation (13), w must satisfy the following equation

$$
\begin{equation*}
L_{1}(w)=a_{1} w_{x}+b_{1} w_{y}+c_{1} w=0 \tag{14}
\end{equation*}
$$

Since $a_{1} \neq 0$, the general solution of (14) can be written as

$$
w(x, y)=e^{-\frac{c_{1}}{a_{1}} x} g_{1}\left(b_{1} x-a_{1} y\right)
$$

where g_{1} is an arbitrary function. To get the solution u, we have to solve the following equation

$$
\begin{equation*}
a_{1} u_{x}+b_{1} u_{y}+c_{1} u=e^{-\frac{c_{1}}{a_{1}} x} g_{1}\left(b_{1} x-a_{1} y\right) \tag{15}
\end{equation*}
$$

For this, if we use the Lagrange method given in Section 2.2, the general solution of equation (13) is found as

$$
\begin{equation*}
u(x, y)=e^{-\frac{c_{1}}{a_{1}} x}\left[x f_{1}\left(b_{1} x-a_{1} y\right)+f_{2}\left(b_{1} x-a_{1} y\right)\right] \tag{16}
\end{equation*}
$$

where f_{1} and f_{2} are arbitrary twice differentiable functions.

Note: The above method is also used to find a particular solution of the non-homogeneous equation $L(u)=G$ if L is reducible. Indeed, with $L=L_{1} L_{2}$, let us assume that $L_{1}(v)=G$ has a particular solution v and $L_{2}(u)=v$ has a particular solution u.Since

$$
L(u)=L_{1} L_{2}(u)=L_{1}\left[L_{2}(u)\right]=L_{1}(v)=G
$$

Then u turns out that a particular solution of $L(u)=G$. Here L_{1} and L_{2} need not be different. They can be different or equal.

