

SUMMARY : Ionization of Water, Weak Acids, and Weak Bases
 hydroxide ions. The extent of ionization is described by an equilibrium constant, $K_{\mathrm{eq}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}$, from which the ion product of water, Kw , is derived. At $25^{\circ} \mathrm{C}, \mathrm{Kw}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$ $=(55.5 \mathrm{M})(\mathrm{Keq})=10^{-14} \mathrm{M}^{2}$.

■ The pH of an aqueous solution reflects, on a logarithmic scale, the concentration of hydrogen ions:

$$
\mathrm{pH}=\log \frac{1}{\left[\mathrm{H}^{+}\right]}=-\log \left[\mathrm{H}^{+}\right]
$$

■ The greater the acidity of a solution, the lower its pH . Weak acids partially ionize to release a hydrogen ion, thus lowering the pH of the aqueous solution. Weak bases accept a hydrogen ion, increasing the pH .

The extent of these processes is characteristic of each particular weak acid or base and is expressed as an acid dissociation constant:

$$
K_{\mathrm{eq}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=K_{\mathrm{a}} .
$$

■ The рКа expresses, on a logarithmic scale, the relative strength of a weak acid or base:

$$
p K_{\mathrm{a}}=\log \frac{1}{K_{\mathrm{a}}}=-\log K_{\mathrm{a}} .
$$

