WEEK 4

4. Moments of Random Variables (mean, variance, covariance)

In this part of the course we are going to look at the moments of the random variables. As
we know, if X is a random variable then any function of a random variable is also a random
variable. That is, g(X) is also a random variable.

On the other hand, we categorized the random variables as discrete and continuous. If the
range of the random variable is a countable subset of the real line we said that the random
variable is discrete and continuous otherwise. That is a random variable X could be either
discrete or continuous and therefore, the transformed random variable g(X) will be either
discrete or continuous.

Note: If X is a continuous random variable, g(X) could be either continuous or discrete
and similarly, if X isdiscrete then g(X) will be either discrete or continuous. But in our course
framework, if X is discrete then g(X) will be discrete and if X is a continuous then g(X)
will be a continuous random variable.

Definition: Let X be a random variable with a probability (or probability density) function

f (x) . The expected value of the random variable g(X) is

ZD g f(x) % |g(x)| f(x) <o
BOUD=) 1 g0tk . ] 19001 (dx<on
xeDy xeDy

Definition: Let X be a random variable with a probability (or probability density) function
f(x). Assume that E(g(X)) exists. Then

a) If g(x)=x then E(X) is called the expected value (or mean) of the random variable X

and denoted by 4.

b) If g(x)=x then E(X*) iscalled the k™ moment of the random variable X and denoted
by 4 -

¢) The number u, — 4 is called the variance of the random variable X and denoted by
either o or Var(X). That is, Var(X)=E(X2) - (E(X))?.

d) The positive square root of the variance is called the standard deviation of the random
variable X and denoted by o . That is, o =+,Var(X).



e) The function E(et*) is called the moment generating function of the random variable X
and denoted by My (t). That is, My (t) =E('*) .

f) The median of a random variable X is a number m such that P(X >m)>1/2 and
P(X<m)>1/2.

g) The number » ,

_EX-p)°

0_3

is called the skewness of the random variable X .
h) g) The number «,

Y

0_4

is called the kurtosis of the random variable X .

Example: Let X be a random variable with a probability function
P(X =x)=p*q‘™*, x=01and q=1-p.

First of all, for any integer k e N we have

k L k L k 1 k k
E(X")=>Y x"P(X=x)= > x qu X =0 P(X=0)+1"P(X=D)=P(X=D=p.
x=0 x=0

That is any moment of the random variable p. Thus, for any integer k we have
E(X*) = = p.
Therefore,
E(X)=u=p, E(X*)=p=p
which implies that
Var(X) =E(X*)~(E(X))? = p—p* = p(L-p) = pq.
The standard deviation is o =+\ar(X) =+/pq. The moment generating function of the

random variable

My (t) = E(e%) = i e¥P(X =x)=e"'P(X =0) +e'P(X =1)=q+ pe'.
x=0

That is, My (t) =g+ pe'.

Note that in general we have



d K tX K
SEMx —E(x"e )‘ =B =

t=0

t=0
In our case, as we have calculated above

k

WMX(t)

= el =p=EXX")=p.

t=0 t=0 B

The skewness: In order to calculate the skewness of the random variable, first we calculate,
3 L 3 L 2 X 1-X 3 3
E(X—u)"= > (x=u)°P(X=x)= > (x=p) p g~ " =(0-p)°P(X =0)+ (1~ p) "P(X =1)
x=0 x=0
=(-p3a+a>p=pa(q® - p?)

and therefore, the skewness is
,_EX-’_pa@-p%)_(a°-p")_(@-P)@+P)_(@=p)

o® (p)*?  (pa)V? o o

Notes: : Let X be a random variable with a probability (or probability density) function
f(x) and a,beR Then

a) E(a+bX)=a+bE(X) b) Var(a+bX)=b%E(X)

Proof: The results are true for both discrete and continuous case. In the following, we will
have the proof for discrete case. For continuous case you only need to change the sums with
integrals

a) Let a,beR then (. The range of the random variable is Dy )

E(@+bX)= > (a+bx)P(X=x)=a >, P(X=x)+b > P(X =x)=a+bE(X)

xeDy xeDy xeDy
b) The variance of a+bX can be calculated directly as
Var(a+bX) = E(a+bX)? - (E(a+bX))? = E(a? +2abX +b?X 2) ~[a+bE(X)]’
= E(a® + 2abX +b?X ?)—[a® + 2abE(X) + b (E(X))?]
= & + ZBbEEX] +b2E(X %) — & — 28bEEX] —b2(E(X))? =b2E(X %) —b2(E(X))?
=b?[E(X?) - (E(X))*]=b?Var(X)
which completes the proof.
Note that,

E(X — )% =E(X% =2uX + p?) = E(X?) = 2uE(X) + u? =E(X?) = 2u? + 1i®
=E(X?) - u® =E(X?)—-(E(X))* =Var(X).

Here, u=E(X). That is, the variance of a random variable can be calculated as either

E(X2)—(E(X))? or E(X —u)?.



Example: (continuous case)
Let X be a continuous random variable with the following probability density function
ie_X/ﬂ
f(x)=1 8

0 , elsewhere.

x>0

Remember the properties of Gamma function from your calculus class as
Ma)p* = [ x*e™XPdx, T(@+)=al(a) and T(n+1)=n!.
x=0

Now, we can calculate any moment of the random variable as

k+1
X(k+1)—le—X/ﬂdX — M = F(k +1)ﬂk .
0

x<e X/ By = 1
0 le
Thus, we can calculate first two moments and the variance as

for k=1 E(X)=T1+1)B=T(2)8=.

EXY= [ xf(0dx=t
(X™) {X (x)dx F;

x=0 X

| —8
| ~—8

for k=2 E(X?)=C(2+1)p%=T3)p%=2p°
and therefore, the variance is

Var(X) =E(X?) - (E(X))* =28% - g = p°.

Multivariate case:

Let X and Y be two random variables with joint probability (or probability density)

function f(x,y). We know that if X and Y are two random variables then any function of
these random variables is also a random variable. That is g(X,Y) is also a random variable.

From the joint probability (or probability density) function we can calculate the marginal
probability (or probability density) functions of X and Y as (for discrete case you only need

to change the integral with summations)

fx(=| f(xy)dy and fy(y)= [ f(xy)dx
yeDy xeDy

Using these marginal probability (or probability density) functions we can calculate E(X),
E(Y), Var(X) and Var(Y) as we have discussed above. Let g be any function from R? to R
(thatis, g:R? — R). Then the expected value of g(X,Y) is given by

2 2 9 YPX=xY=y) , X 2 19(XY)IP(X=XY=y)<o

B xeDy yeDy xeDy yeDy
SOCYD=0 0 g toendyde [ [ To0ey) () ldydx <.
xeDy yeDy xeDy yeDby



If we set g(x,y)=xy, the expected value of XY can be calculated by either

E(XY)= > > xyP(X=xY=y) or E(XY)= [ [ g(xy)f(xy)dydx.
xeDy yeDy xeDy yeDy

Now we have E(X), E(Y) and E(XY).

Definition: The difference between E(XY) and E(X)E(Y) is called the covariance between
X and Y denoted by Cov(X,Y). That isCov(X,Y)=E(XY)-E(X)E(Y). The covariance
between X and Y can also be calculated as Cov(X,Y)=E[(X —E(X))(Y —E(Y))].

From the marginal probability (or probability density) function we can also calculate the
variances. Using these values, we define the correlation between to random variables.

Definition: The ration of Cov(X,Y) to the square root of Var(X)Var(Y) is called the

correlation between X and Y denoted by pyy . That is,

Cov(X,Y)
Jar(X)var(y)

The correlation between two random variable measures some kind of dependency. In

PXy =

general, the correlation is always between -1 and+1 , that is —1< pyy <1 OF 0< p% <1.
Note: IfX and Y are independent random variables then the correlation is zero but the
converse is not true in general. The result is true for both discrete and continuous case. The
proof will be done for discrete case. For continuous case you and change the summations to
integrals.
Proof: Let X and Y be two independent random variables then the joint probability
function can be written as a product of the marginal probability functions. That is,

f(x,y)=fy (x) fy (y) forall x and y in R . Therefore,
E(XY)= X 2 xyf(xy)= 2> X xyfx(x)fy(y)

xeDy yeDy xeDy yeDy
= 2 xfx() 2 y i (y)=E(X)E()
xeDy yeDy

That is, if X and Y are two independent random variables then E(XY)=E(X)E(Y) which

implies that Cov(X,Y)=E(XY)—-E(X)E(Y)=0 and therefore pyy =0.

Notes:
1. If X and Y are two independent random variables then E(XY)=E(X)E(Y) but the

converse is NOT true. That is, having pyy =0 does not imply independency. However, in this

class if pyy =0 you can assume that the random variables are independent.



2. If pyy =1 then the random variables are linearly dependent. This means that you can find
constants a,beR such that P(Y =a+bX)=1.

Example: Let X and Y be two random variables having the following joint probability

function:

c(x+y) , x=012;y=12
f(x,y)=
0 , elsewhere.

Let us calculate the correlation between these two random variables. First we need to

determine the value c¢. Note that

i ic(x+ y)=¢C i [(x+1)+(x+2)]=c§ (2x+3)=c[(0+3)+(2+3)+(4+3)]=15¢C
x=0y=1 x=0 x=0

which implies that ¢ =1/15. That is the joint probability function of X and Y can be written

as

1 =0,12;y=12
f(xy) = {(x+y)/5 , x=0 y

, elsewhere.

Now we can find the marginal probability functions by using the following summations:

1Ex(x)——Z( +y)——[(x+1)+(x+2)]_2";r3
Syt
fY(y)=E ZO( +y)=—[(0+y)+(1+y)+(2+y)] 33;;3 y;rl

Thus, the marginal probability functions of X and Y are

2x+3)/15 , x=0,12 /5 =12
(24 X and 1, (y)=] 0D y
, elsewhere , elsewhere.

fx (x) =

From the marginal probability functions we can calculate the mean and variances of X and Y

E(X)= Z X fx(x)=E Z X(2x +3) =—[O+5+14] 19

x=0 x=0

E(X )—Zx fx(x)—l—Zx (2x+3)=—[0+5+28] 3_u

x=0 xO

Var(X) = E(X?) = (E(X))? _151 (;2)5 45(11)2;519(19):%

Similarly,

2 12 1 8
E(Y)=2 yfv(y)=gZ y(y+1 =§[2+6]=—
y=1 y=1



2 12 1 14
EYY) =3y fy()== 3 yA(y+]) ==[2+12] ==
yo1 5701 5 5

14 64 5(14)-64 70-64 6

— 2y _ 2_— — oE

Finally, we need E(XY) which is calculated as

1 2 2 1 2 1 2 5
E(XY)==> > xy(x+Yy)=— > [X(x+D)+2x(x+2)]=— > (3x“ +5X)
x=0y=1 15x:O 15x:O
- i[[:a(l)z +5(]+[3(2)% + 5(2)]] W
15 15 '
Thus,
Cov(x,Y)=E(XY)—E(X)—E(Y)=2—§§=2—@—150_152= 2

155 75 75 75

and the correlation between X and Y is

_ 225)(25
oy = Cov(X.,Y) 2175 __2@5() 2~ 0.0705.

_ ( ) __
Nar(X)var(Y) J134/225)(6/25) 75 J134)6) 804

Now, let us calculate the conditional expectation of Y given X =x. That is we want to
calculate E(Y|X =x). In order to calculate this conditional expectation, first we need the
conditional probability function of Y given X =x . This is found to be

f(x,y)  (x+y)/15 (x+Y)
fy (X)  (2x+3)/15  (2x+3)

fyx =x (Y1 X) = , y=12

and the conditional expectation of Y given X =x is

2 2. ((x+Y) Xx+1 2(x+2) 3x+5
] ) yz=1y Y|X_X(y| ) Ely((2x+3) 2x+3  2x+3  2x+3

Example: (continuous case) Let X and Y be two random variables having the following
joint probability density unction:

c(x+y) , O0<x<2;0<y<2
f(xy)=
0 , elsewhere.

Let us calculate the correlation between these two random variables. First we need to

determine the value c¢. Note that

2 2 2 5 2
1=c [ [ (x+y)dydx=c | [xy+y2/2} dx=c | (2x+2)dx =c[x? +2x]2_y =8¢
—0ve _ y=0 _
x=0y=0 x=0 x=0

which imlies that ¢ =1/8. That is the joint probability density function is



f(xy) = {(X+y)/8 , 0<x<2 ;0<y<2

, elsewhere

In order to calculate the covariance (or correlation) between these two random variables first

we need the marginal probability density functions. Note that

E [ (x+ y)dy—X—Jrl and l [ (x+ y)dx_y—Jrl
8 y=0 8 x=0 4
and thus the marginal probability density functions can be calculayed as

(x+1)/4 , O0<x<2 (y+1)/4 , 0O<y<?2
fx (X) = { {

(y)=
, elsewhere fv , elsewhere.

Note that the random variables X and Y have the same probability density function (that is,
they are identically distributed) but they are not independently distributed random variables

because

f(x,y){xgy] {Xﬂ(yfj — (00 fy (¥).

Let us try to calculate the probabilities: P(X <1), P(Y >1) and P(X <1]Y >1) . From the

marginal probability density functions the probabilities are calculated as:

1 1
P(X <1)_X{0 fx(x)dx=% £ x+1)dx=%[(x2/2)+xl(:0 :%B}zg

and

| o

2
P(Y>1)= [ fy(y)dx=
y=1

2
R N A

N
<

finally, from the follwing integral

1
2 2 [,2
P(X<LY>D= | j f (X, y)dxdyz—f j (x+y)dxdy:1 | l:—+xy] dy
y=1x=0 y=1x=0 8y_l 2 x=0

127 1 _1y2y2 1f(4,2) (1, 1)]_2 2.1
—gyf:l[“ﬂdy—g{TzL—aKz 35 (2+§ﬂ_§[(2+1)_1]_§_2

(o]

we have

P(X<1|Y>1)_P(X<1,Y>1)_1/4_(1J(§j_g
~ P(Y>1) 5/8 (4)l5) 5

Since, X and Y are identically distributed we have E(X)=E(Y) and Var(X)=Var(Y).

From the marginal probability density function of X



2

2
12 1 2 13 2 1(8 4 7
E(X)= | xfy(X)dx== | x(x+1)dx=- X2+ x)dx == S+ = =—|l-+-|==
()X{O x () 4{( ) 4{ ) 4[3 2 4[32]6
= = = x=0
and
2
2 2 2 4 3
E(X2)= [ %2 fy (dx== [ 2 (x+Ddx=2 | (Cax?yx=1|* X =3(E+§j=§
o 47 47 ala 3] ~ala"3) 3

and the variance becomes

Var(X) = E(X?)—(E(X))? 22_32%

In order to calculate the covariance, we need E(XY) which is calculated as

2
2 2.,2 3
= | | xyfeonixdy=2 [ | xy(cey)dxdy=1 ; {X y,x } N
y=0x=0 8 4 Z0x=0 8, 3 y-0

2
2 3 2
:1 I 2X2+8_X dx:l 2_X+8L :ﬂ.
8., 3] 8 3 6 3
= x=0

Thus the covariance between X and Y is calculated as

Cov(X,Y) = E(XY)— E(X)E(Y) =%-(8(9=g_:_2= 483‘649 :_%

and the correlation between these two random variables is found to be
Cov(X,Y) -1/36 _-1/36 1

War(X)Var(Y)_\/(11/36)(11/36) 11/36 36

PXYy =

This says that the random variables X and Y are negatively correlated. This means that
when one increase the other decrease.

Finally let us calculate E(Y | X =x) . In order to calculate the conditional expectation we need
to find the conditional probability density function. The conditinal probability density function
of Y given X =x is given by

f(x,y) (x+y)/8 x+y

fyix=x(Y1x) = = = : 2.
V=Y )= = e axan 0T
That is,
x+y , O<y<2
fyix=x (Y[ X) =1 2(x+1)
0 , elsewhere
Note that
Tf (y[x)dy = ?(X+y)dy— L [xy+y2/2]2 =1
o 20+1) g 2(x+1) -0

and therefore,



2

2
E(V[X=x)= [ yfyxx(yIx)dy= [ y(x+y)dy

2(x+1) y=0

y=0
2
_ 1 [(Xy2/3)+y3/3} ::2X+(8/3): 3X+4.
2(x+1) y=0  2(x+1)  3(x+1)

Example: Let X, Y and Z be three random variables with joint probability density function

c(x+y)z , O<xy,z<1
0 , elsewhere.

f(x,y,2) ={
First, let us calculate the constant c . Since it is a joint probability density function the total

probability has to be one. That is,

1 1 1 1 1 1
C

1= [ | [ fey.dzdyax=c [ [ [ (x+y)zdzdydx="
x=0y=02z=0 x=0y=02=0 2

and thus [ c=2 . therefore, the joint probability density function of X , Y and Z is

2 i) O ) 1l 1
F(x,y.2) = (x+vy)z <X V¥,2<
0 , elsewhere.

Note also that the marginal probability density function of Z and the joint probability density
function of (X,Y) can be obtained from

1 1 1
f;(2) = J I 2(x+y)zdydx=2z , fy y(x,y)= _f 2(x+y)zdz=(x+Yy)
x=0y=0 z=0

as

2z , 0O<z<1 (x+y) , O<xy<1
f-(2) = and f X,y) =
2(2) { 0 , elsewhere. xy () {0 , elsewhere.

Notice that since
f(x,y,2)=2(x+y)z = (x+y) 2z=fx y (x,¥) f2(2)
the random variable Z is independent from (X,Y) and therefore Cov(X,Z)=Cov(Y,Z)=0.

The marginal probability density functions of X and Y are found by using the integrals

1 1 1
(9= [ fxy(ndy= | xeydy=x+Z and )= [ (xrpde=y+-

y=0 y=0 y=0
as
x+l O<x<1 y+l O<y<l
(=12 ' and fr(y)=1" 2 '
0 , elsewhere 0 , elsewhere.

Moreover, the joint probability density functions of (X,Z) and (Y,Z) are

10



z(2x+1) , O<x,z<1
0 , elsewhere

z(2y+1) , O<y,z<l

fx,z(x,2) :{ and  fy z(y,2) :{

0 , elsewhere.
Since,
fx 7 (X,2) =2(2x+1) =2z (x+(1/2)) = 7 (2) fx (X)
The random variables X and Z are independent and thus Cov(X,Z)=0. Similarly,
fy z(y,2) =22y +1)=2z(y +(1/2)) = {7 (2) fy (y)
The random variables Y and Z are independent and thus Cov(Y,Z)=0.

In order to calculate the conditional expectations we need the conditional probability density
functions. Let us try to calculate, E(Z|X =x,Y=y) and E(Y|X=x,Z=z). Since Z is

independet from (X,Y) the conditional probability function of Z given X =x and Y =y isthe

same as f,(z) because

f(x,y,2) :2(x+y)z _oy
fxy(xy) (x+y)

fzix=x,y=y (21X, y) =
and thus,

1 1 1
EEZIX=xY=y)= [ 2fzxxy—y@Ixy)dz= [ zf;(2)dz= | 222dz:§=E(Z).
z=0 z=0 z=0

On the other hand, in order to calculate E(Y | X =x,Z =z) we need the conditional probability
density function of Y given X =x and z = x which can be obtained for 0<y<1

f(x,y,2) 2(x+y)z 2(x+Yy)
fyx 7(%2)  z(2x+1) (2x+1)

fyix=x,z=2(ZI X y) =

That is, the conditional probability density function is

M , 0< y<]_
fyix=x,z=2 (2] % y) =1 (2x+1)
0 , elsewhere.

Note that this conditional probability density function does not depend on z and this is a
probability density function because

1

1 1
2(x+
J fY|xzx.Z=z(Z|X-y)dy=I ( y)dy= 2(x+y)dy =1.

y=0 y=0 (2x+1) (2x+1) y-L)

Thus the conditional expectation

3X+2
2x+1°

E(Y|X=x,Z2=2)= Jl. y2(X+y)dy= ! } 2y (x+1)dy =
' jo @x+D T (@x+1) L

Remember the conditional probability of A given B can be written as

11



P(ANB)
P(B)

P(A|B)=

and if the events A and B are independent we have

P(AN B) P(A)P(B)

AR =" g P(B)

=P(A).

Now, using the properties of the conditional probability we calculate some probabilities as

below:

1 1 1 z
P(Y<Z)= j P(Y<Z|Z=2)f,(z)dz= [ P(Y <2) f,(z)dz = j {j fY(y)dnyZ(z)dz

z=0 z=0 z=0\ y=0

1Z/ddly2+yzdl32d5
:J' I[y+(12)]y222=J.OT ZZZZI(Z+Z)Z=E

z=0\ y=0 7= y=0 z=0

1 1 1
P(X>Y)= [ P(X>Y[Y=y)fy(y)dy= [ P(X>y) fy(y)dy= | {j fx(X)dXJfY(y)dy

1
J

y=0 y=0 y=0\x=y
1

]

L 1 X2+X '
= j[x+(1/2)] dx [(y+1/2)dy = j[ - J (y+1/2)dy
y=0

X=y

S e

Now, we want to calculate the following conditional probabilities:
P(X >1/2|Z<1/2) and P(X >Y|Z <1/2).

Note that since the random variables X and Z are independent

P(X >1/2
P(X >1/2|Z <1/2) = PX>112, 2<172) ( ) Pz<117) —P(X >1/2)

P(Z <1/2) P(Z<112)

1 1 ! 5
= | fx()dx= j (x+1/2)dx:(—(x2+x)J =2
x=1/2 x=1/2 2 x=1/2 8

and
P(X >Y) P(Z<11?) 1
P(X>Y|Z<1/2)= =P(X >Y)==
P(7<112) 2
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