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WEEK 5 

 

5. Transformations of Random Variables 

 

 We know that a random variable is a function from the sample space to the real number. That is, if 

X  is a random variable it is a function from   to  ( :X   ). The range of a random variable is 

a subset of the real numbers. As we know, if the range of the random variable XD  is a countable 

subset of the real number then it is called a discrete random variable and it is continuous otherwise. 

Now, consider a function g  from  to  ( :g  ).  The composite function g X  is also a 

function from sample space to real numbers ( :g X  ) and therefore g X  is also a random 

variable (see Figure 1). 

 

Figure 1. Transformation of random variable 

 

 The composite function g X  is sometimes denoted as ( )g X  and it is defined as for any w , 

( )( ) ( ( ))g X w g X w . Moreover, the range of ( )Y g X  is also a subset of , YD  .   

 

 If the random variable X  is continuous, the transformed random variable ( )g X  (say Y ) may be 

either continous or discrete. Similarly, when X  is discrete ( )g X  may be discrete or continuous. In our 

study, if X  is continuous ( )g X  will be continuous and if X  is discrete ( )g X  will be discrete otherwise 

citeted.  

 In this part of the class, our goal is to find the distribution of the transformed random variable. 

Later, we are going to investigate the multivariate version of the transformations. 

 

 A) Discrete Case:  

 In discrete case, the easiest way to find the distribution of the transformed random variable is to 

calculate the probabilities directly.  
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 Example: a) Let X  be a random variable with the following probability function: 

  
, 2, 1, 0,1,2

( )
0 , .

c x
f x

elsewhere

  
 


  

Note that  from the range of X  is { 2, 1 , 0 , 1 , 2}XD    . Note that  since  

  
2

2

1 ( ) 5

Xx D x

f x c c

 

     

we have 1/ 5c   because 5 1 1/ 5c c   .  That is the probability distribution of X  is 

  
1/ 5 , 2, 1, 0,1,2

( )
0 , .

x
f x

elsewhere

  
 


 

 Now, we want to find the probability distribution of the random variable 2Y X .  Note that the 

range of Y  is {0 , 1 , 4}YD   and the corresponding probabilities are calculated as 

 
1

( 0) ( 0)
5

P Y P X      

 2 1 1 2
( 1) ( 1) ( 1 1) ( 1) ( 1)

5 5 5
P Y P X P X or X P X P X                

 2 1 1 2
( 4) ( 4) ( 2 2) ( 2) ( 2)

5 5 5
P Y P X P X or X P X P X                

and therefore the probabilithy function of X  and Y  are given below: 

X x   2  1  0  1  2  

( )P X x   1/ 5  1/ 5  1/ 5  1/ 5  1/ 5  

 

Y y  0  1  2  

( )P Y y  1/ 5  2 / 5  2 / 5  

 

 

b) Now let X  be a random variable with the following probability function.  

X x  3  0  1  2  3  

( )P X x  3 / 8  1/ 8  1/ 8  1/ 8  2 / 8  

 

 Suppose we want to find the distribution of 2Y X  as before. Note that the range of the random 

variables are  { 3, 0 , 1 , 2 , 3}XD    and {0 , 1 , 4 , 9}YD  . Note that the probabilities of Y  are 

calculated as 

 2 1
( 0) ( 0) ( 0)

8
P Y P X P X       ,  2 1

( 1) ( 1) ( 1)
8

P Y P X P X       

 2 1
( 4) ( 4) ( 2)

8
P Y P X P X      ,  2 3 2 5

( 9) ( 9) ( 3) ( 3)
8 8 8

P Y P X P X P X            

and the probability distribution can be written as 
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Y y  0  1  4  9  

( )P Y y  1/ 8  1/ 8  1/ 8  5 / 8.  

 c) Now consider the random variable given in part (b) and find the probability distribution of 

2 1Y X  . Note that the range of the random variables are  

  { 3, 0 , 1 , 2 , 3}XD    and { 5 , 1 , 3 , 5, 7}YD   . 

Similarly, the probabilities can be calculated as 

 
3

( 5) (2 1 5) ( 3)
8

P Y P X P X          ,  
1

( 1) (2 1 1) ( 0)
8

P Y P X P X        

 
1

( 3) (2 1 3) ( 1)
8

P Y P X P X       ,  
1

( 5) (2 1 5) ( 2)
8

P Y P X P X        

 
2

( 7) (2 1 7) ( 3)
8

P Y P X P X        

and therefore the probability distribution can be written as  

Y y  5  1  3  5  7  

( )P Y y  3 / 8  1/ 8  1/ 8  1/ 8  2 / 8.  

 

B) Continuous Case:  

 Remember that the probability density function of a continuous ramdom variable is the derivative 

of the cummulative distribution function. Thus, if we can find the distribution of the transformed 

random variable, we can derivate it to find the probability density function of the transformen random 

variable.   

 Let X  be a continuous random variable with probability density function ( )f x , cummulative 

distribution function ( )F x  with the range XD . Consider a transformed random variable ( )Y g X . At 

this moment we assume that the function g  is differentiable. The cummulative distribution function 

of Y  can be calculated  for all Yy D  as 

 1 1( ) ( ) ( ( ) ) ( ( ) ) ( ( ))Y XF y P Y y P g X y P X g y F g y         .  

 Thus, the probability density function of the transformed random variable Y  is the derivative of 

( )YF y  which is  

 1 1 1( )
( ) ( ( )) ( ( )) ( )Y

Y X X

dF y d d
f y F g y f g y g y

dy dy dy

       
   

. 

Note that the derivative of 1( )g y  may be negative and the probability can not be a negative number. 

For example if g  is a decreasing function the derivative is negative. Therefore, we take the absolute 
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value of the derivative (this derivative is known as the jacobien) and thus the probability density 

function of the transformed random variable can be written as 

     1 1( ) ( ( )) ( ) .Y X

d
f y f g y g y

dy

  
 

      (1) 

 Example 1: Let X  be a random variable with the following probability density function 

  
, 0 1

( )
0 , .

c x x
f x

elsewhere

 
 


  

a) The constant c can be determined from 

 

11 1 2

0 0 0

1 ( ) 2.
2 2

x x x

x c
f x dx c x dx c c

  

          

 b) Let us find the probability density function of 2 1Y X  . Obviously, since (0,1)XD   the range 

of Y  is  (1,3)YD  .  Thus, ( ) 0YF y   for 1y   and ( ) 1YF y   for 3y  . Now, for 1 3y   the 

cummulative distribution function 

2( 1)/2 2( 1)/2
2

0
0

1 ( 1)
( ) ( ) (2 1 ) ( ( 1) / 2) 2 .

2 4

y y

Y
x

x

y y
F y P Y y P X y P X y xdx x

 




  
            

 
  

That is,  the cummulative distribution function and the probability density function of 2 1Y X   are 

 2

0 , 1

( ) ( 1) / 4 , 0 3

1 , 3

Y

y

F y y y

y




   
 


  ,    

( 1)
, 1 3

( ) ( ) 2

0 , .
Y Y

y
yd

f y F y
dy

elsewhere


 

  



  

This is a probability density function because 

 

3
3 3 2

1 1 1

1 9 3 1 1 3 1
( ) ( 1) 1.

2 4 2 4 2 4 2 4 4
Y

y y y

y y
f y dy y d y

  

     
                     

   

The same probability density function can be found by using the equation (1). Note that 

( ) 2 1 ( 1) / 2y g x x x y      . That is, 1( ) ( 1) / 2g y y     and the derivative of this inverse 

function is 

   1 1 1
( )

2 2

d d y
g y

dy dy

         
 

and using the equation (1) we write the probability density function of Y  for 1 3y   as 

 1 1 1 1 1
( ) ( ( )) ( ) 2

2 2 2
Y X

d y y
f y f g y g y

dy

           
 

which is the same as above.  
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 c) Now, let us try to find the probability density function of 2 1Y X   . Note that the range of Y  

is ( 1 , 1)YD   . Note also that the function ( ) 2 1g x x    is decreasing and 1( ) (1 ) / 2g y y    and 

the derivative of the inverse function is negative (which is 1/ 2 ). Thus the probability density function 

of 2 1Y X    for 1 1y    is   

   1 1 1 1 1
( ) ( ( )) ( ) 2

2 2 2
Y X

d y y
f y f g y g y

dy

             
.  

That is,  

 

1
, 1 1

( ) 2

0 , .
Y

y
y

f y

elsewhere


  

 



  

and it is a probability density function because 

 

1
21 1

1 1 1

1 1
( ) (1 ) 1.

2 2 2
Y

y y y

y
f y dy y dy y

  

 
     

 
 

     

 
 Example 2.: Let X  be a random variable with the following probability density function 

  
2 /21

( )
2

x
Xf x e



    for x         (2) 

and let us try to find the probability density function of 2Y X . Note that the function ( )Xf x  is an 

even function ( ( ) ( )X Xf x f x  ). Moreover XD    and YD   and therefore, ( ) 0YF y   for 

0y   . For 0y   the cummulative distribution function is 

 2( ) ( ) ( ) ( ) ( ) ( )Y X XF y P Y y P X y P y X y F y F y           . 

Thus, the probability density function of Y  for 0y   is 

 
/2 (1 2)/2 /2 (1 2)/2 /2

1/2 1/2

1
( ) ( ) ( ) ( ) ( ) ( )

2

1 1 1 1 1
( ) .

2 2 (1/ 2) 2

Y Y X X X X

y y y
X

d d
f y F y F y F y f y f y

dy dy y

f y e y e y e
y y  

    

         
   

   


   

Therefore the probability density function pf the transformed random variable Y is 

   

(1 2)/2 /2

1/2

1
, 0

( ) (1/ 2) 2

0 , .

y

Y

y e y
f y

elsewhere

 


 



     (3) 

In general the probability density function can be written for 1p   as 

 

( 2)/2 /2

/2

1
, 0

( ) ( / 2) 2

0 , .

p y

p
Y

y e y
f y p

elsewhere

 


 



     (4) 
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and known as the probability density function of chi-square distribution with p   degrees of freedom.  

 
 A note on these probability distributions (will be discussed later in details):  

 The random variable X  with the probability density function given in (2) is known to be the 

standard normal random variable and denoted by ~ (0,1)X N  and  the random variable Y  with the 

probability density function in (3) is the chi-square random variable with 1  degrees of freedom. 

Similarly, if a random variable (say W ) has a probability density function given in (4) we say that W  is 

distributed as chi-square with p  degrees of freedom. 

 In statistics, almost all statistical inferences depend on the normality assumption. If the data do not 

satisfy the normality assumption we use some techniques (usually trnasformations) to achieve the 

normality assumption. The chi-square distribution is also very important distribution in statistics which 

is obtained by the squares of normally distributed random variables. These distributions are also 

known as the sample distributions which will be discussed later. 

 
 C) Mutivariate Transformations:  

 In this part of the notes, we are going to investigate multivariate transformations. If X  and Y  are 

two random variables with joint probability (or probability density) function ( , )f x y  we will try to find 

the probability (or probability density) function of 1( , )U g X Y  and 2 ( , )V g X Y . A generalization is 

also possible for k  variate random vectors and k  variate transformations. for simplicity we will only 

consider bivariate transformations. 

 Let 1 2, , , kX X X  be the random variables with joint probabity (or probabilkity density) function 

1 2( , , , )kf x x x  and consider the following transformations 

 1 1 1( , , )kY g X X ,   2 2 1( , , )kY g X X ,…, 1( , , )k k kY g X X .  

Assume that the functions ig ’s are invertiable and differentiable with respect to their components.  

We can write the Jacoien matrix as 

 

1 1 1 1 1 1

1 2

2 1 2 1 2 1

1 2

1 1 1

1 2

( , , ) ( , , ) ( , , )
. . .

( , , ) ( , , ) ( , , )
. . .

. . .

. . .

. . .

( , , ) ( , , ) ( , , )
. . .

k k k

k

k k k

k

k k k k k k

k

h Y Y h Y Y h Y Y

Y Y Y

h Y Y h Y Y h Y Y

Y Y Y

J

h Y Y h Y Y h Y Y

Y Y Y

   
 

   
   
 
   
 

  
 
 
 
 
   
    
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and denote | |J  as the absolute value of the determinant of J  ( that is, | | | det( )|J J  ) then the joint 

probability density function of  1 2, , , kY Y Y  is given by 

1 1, , 1 , , 1 1 2 1 1( , , ) | | ( ( , , ), ( , , ),..., ( , , ))
k kY Y k X X k k k kf y y J f h y y h y y h y y  (5) 

where 1 1 1( , , )kX h Y Y ,  2 2 1( , , )kX h Y Y ,…, 1( , , )k k kX h Y Y . For simplicity we will use 

2k  .  

 Example 1 : Let X  and Y  be two independent random variables with the same probability density 

function given below.  

2 /21
( ) ,

2

xf x e x


  . 

 a) Let us consider the transformations as U X Y   and  V X Y    and try to find the joint 

probability density function of U  and V . The inverse transformations are obtained as  

( ) / 2X U V   ve ( ) / 2Y U V   and theJacobien matrix with its determinant are 

1 1

2 2

1 1

2 2

X X

U V
J

Y Y

U V

    
    

    
    

       

  and    
1

det( )
2

J  .  

 

 Note that since the random variables X  and Y  are independent the joint probability density 

function can be written for all ,x y  as 

2 2 2 2/2 /2 ( )/21 1 1
( , ) ( ) ( )

22 2

x y x y
X Yf x y f x f y e e e

 

      . 

therefore the joint probability density function of U  and V  for all ,u v  is written as  

 

2 2

2 2

, ,

2 2

2 2 ( )/4

1 1 1
( , ) ( , ), ( , ) exp

2 2 2 2 2

1 1
exp ( ) ( )

4 8

1 1 1
exp 2 2 .

4 8 4

U V X Y

u v

u v u v
f u v J f x u v y u v

u v u v

u v e





 

 

              
       

         

        

 

 That is, the joint probability function of  U  and V  is  

2 2( )/4
,

1
( , ) , .

4

u v
U Vf u v e u v



    
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 Since joint probability density function can be written as 

2 2 2 2( )/4 /4 /4
,

1 1 1
( , ) ( ) ( )

4 4 4

u v u v
U V U Vf u v e e e f u f v

  

       

the random variables U  ve V  are independent.  

b) Now let us try to find the probability density function of the transformed random variable  

/U X Y . In order to use the equation (5) we need to define an auxiliary transformation. Let  V Y

. First we find the joint probability density function of /U X Y   and  V Y  and using this joint 

probability density function we can find the marginal probability density function of U . The inverse 

transformations are X U V  ve Y V  and the Jacobien matrix with its  determinant are calculated 

as  

0 1

X X

v uU V
J

Y Y

U V

  
    

    
    

   

  and det( )J v .  

therefore the joint probability density function of U  and V  can be written as for all ,, U Vu v D   

2 2
, ,

2
2

| | 1
( , ) | | ( ( , ), ( , )) exp [( ) )]

2 2

| |
exp [ 1] .

2 2

U V X Y
v

f u v J f x u v y u v uv v

v v
u





 
    

 

 
   

 
 

 

Note that we want to find the probability density functiıon of U . Remember that a function ( )h x  is 

even if ( ) ( )h x h x   and if ( )h x  is an even function we have for all a  , 

0

( ) 2 ( )

a a

a

h x dx h x dx



  . 

Therefore the joint probability density function of U  and V  is an even function of v . In order to find 

the marginal probability density function of U  we integrate the joint probability density function over 

the range of V , VD . The integral is obtained as ( saying 2 1a u  ), 

2 2/ 2 / 2
,

0

1 2
( ) ( , ) | |

2 2

a v a v
U U Vf u f u v dv v e dv ve dv

 

  
 

 

      

2

0

1
, used

2

a t v
e dt t




   

20

1 1 1 1

1

at

t
e

a a u  






 
    

 
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and therefore the probability density function of U  is  

2

1 1
( ) ,

1
Uf u u

u
 


. 

 
 Example 2. Let X  and Y  be two independent random variables with the following probability 

density function  

, 0
( )

0 , . .

xe x
f x

d y

 
 


 

 a) Let us define the transformations as U X Y   and / ( )V X X Y   and try to find the joint 

probability density function of U  and V . Note that the back transformations are X U V  and  

(1 )Y U V   and the Jacobien matrix with its determinant are calculated as  

(1 )

X X

v uU V
J

Y Y v u

U V

  
    

    
     

   

  and   det( ) (1 )J uv u v u      . 

Since the random variables X  and Y  are independent the joint probability density function can 

be written as, 

( ) , 0, 0
( , )

0 , . .

x ye x y
f x y

d y

   
 


 

and therefore using the equation in (5) we can write the joint probability density function of U  and 

V  for 0 1v   and 0u   as 

 ( (1 )
, ,( , ) | | ( ( , ), ( , )) | |

uv u v u
U V X Yf u v J f x u v y u v u e ue

      . 

That is the joint probability density function is  

,
, 0 1, 0

( , )
0 , . .

u

U V
u e v u

f u v
d y

   
 


 

 Now, it is easy to find the marginal probability density functions of  U  and V  by using the following 

integrations:  

1 1

,

0 0

( , ) u u
U V

v v

f u v dv u e dv u e 

 

        and    ,

0 0

( , ) 1u
U V

u u

f u v du u e du

 


 

   . 

Thus the marginal probability density functions are 
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, 0
( )

0 , . .

u

U
u e u

f u
d y

 
 


  
1 , 0 1

( )
0 , . .

V

v
f v

d y

 
 


 

and since , ( , ) ( ) ( )U V U Vf u v f u f v  the random variables U  are V  independent.  

b)  let X and Y  be two independent random variables with the same probability density function 

given below: 

1 , 0 1
( ) ( )

0 , . .
Y

x
f x f x

d y

 
  


 

Let us try to find the probability density function of  U X Y . In order to use equation (5) we need 

to define an auxiliary transformation. Let  V X  and the back transformations turn out to be  X V  

and /Y U V  and the Jacobien matrix and its determinat is calculated as  

2

0 1

1

X X

U V
J u

Y Y
v v

U V

  
       
   
     

   ,    
1

det( )J
v

  . 

Therefor the joint probability density function of  U  and  V  can be written as (equation in (5)) as, 

,

1
, 0 1

( , )

0 , . .
U V

u v
f u v v

d y


  

 



 

and the marginal probability density function of  U  is calculated from the integral as  

1

, ( , ) ln( )

V

U V

v D v u

dv
f u v dv u

v
 

    . 

Therefore the probability density function of U  is 

ln( ) , 0 1
( )

0 , . .
U

u u
f u

d y

  
 


 

c) Let 1 2 3, ,X X X  be three random variables with the joint probability density function  

1 2 3

1 2 3

1 2 3
, , 1 2 3

6 , 0
( , , )

0 , . .

x x x

X X X
e x x x

f x x x
d y

       
 


 

Suppose we want to find the joint probability density function of 1 1U X  , 2 2 1U X X   and 

3 3 2U X X  . Note that the back transformations are found to be 

1 1X U    2 1 2X U U  , 3 1 2 2X U U U    

and the Jacobien matrix ant its determinant are calculated as  
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1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

1 0 0

1 1 0

1 1 1

X X X

U U U

X X X
J

U U U

X X X

U U U

   
 
     

     
             
 
    

, det( ) 1J  . 

therefore the joint probability density function of 1 2 3, ,U U U  is 

 
1 2 3

1 2 3

3 2

, , 1 2 3

6 , 0, 1,2,3
( , , )

0 , . .

u u u
i

U U U

e u i
f u u u

d y

    
 


 

 Note that eventhogh the random variables 1 2 3, ,X X X  are not independent since 

   
1 2 3 1 2 3, , 1 2 3 1 2 3( , , ) ( ) ( ) ( )U U U U U Uf u u u f u f u f u  

the random bvariables 1 2 3, ,U U U  are independent. 

 d) Let 1 2, ,..., nX X X  be independent random variables with the same probability density function  

  

1
, 0

( )

0 , . .

x
f x

d y





 

 



 

 Now we want to find the probability density function of 1 2max{ , ,..., }nU X X X . Note that we can 

not use the formula in the equation in (5). Therefore, we need to calculate its cumulative distribution 

function. Note that the range of U  is the same as the range of X ’s. Therefore, ( ) 0UF u    for 0u   

and ( ) 1UF u   for u  .  For 0 u     

 
 

1 2 1 2

1
1 0

( ) ( ) (max{ , ,..., } ) ( , ,..., )

1 1
( ) ( ) .

U n n

n
un

n n
i n

i x

F u P U u P X X X u P X u X u X u

P X u P X u dx u
  

       

 
       

 
 

  

Thus, the cumulative distribution function and probability density function (which is the derivative of 

the cumulative distribution) of U  are  

  

0 , 0

( ) , 0

1 ,

n

U n

u

u
F u u

u










  

 


    and   
1 , 0( )

( )

0 , .

n
U n

U

n
u udF u

f u
du

elsewhere





 

  



  

e) Let X  ve Y  be two independent random variables with the same probability density function 

given below:  

, 0
( )

0 , . .

x

X
e x

f x
d y

 
 

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 Suppose we want to calculate the probability density functions of max( , )U X Y  and  

min( , )V X Y . Here, we are going to calculate the distribution functions of both random variables.  

 First let us find the cumulative distribution function of U . Note that ( ) 0UF u    for 0u   and for 

0u  , 

2 2

( ) ( ) (max( , ) ) ( , )

( ) ( ) [ ( )] (1 ) .

U

u

F u P U u P X Y u P X u Y u

P X u P Y u P X u e

      

      
 

thus, the cumualtive distribution function and the probability density function (derivative of ( )UF u )  

of U  are  

2

0 , 0
( )

(1 ) , 0
U u

u
F u

e u


 

 

  and  
2 (1 ) , 0

( )
0 , . .

u u

U
e e u

f u
d y

   
 


 

 In a similar way, we can calculate the cumulative distribution function of  V . Note that ( ) 0VF v 

for 0v    and for 0v    

2 2

( ) ( ) (min( , ) ) 1 (min( , ) )

1 ( , ) 1 ( ) ( ) 1 [ ( )] 1

V

v

F v P V v P X Y v P X Y v

P X v Y v P X v P Y v P X v e

      

            
 

and thus the cumulative distribution function and probability density function of V  are given below: 

nin dağılım fonksiyonu da 

2

0 , 0
( )

1 , 0
V v

v
F v

e v


 

 

  and 
22 , 0

( )
0 , . .

v

V
e v

f v
d y

 
 


 

 
 Discrete case: For discrete case, the probability function of a transformed random variable can be 

found directly by calculating the related probabilities. There is also an easier way (generating function 

technique) the we are going to study next. here is an example how to find the probability distribution 

of a transformed random variables for discrete case.  

 
Example:  Let X and  Y  be two independent random variables with the following probability 

distribution function:  

( ) ( ) / ! , 0,1,2,... and 0.xP X x P Y x e x x        

 Suppose we want to find the probability distribution of U X Y  . Obviously the range of U  is 

the same as the range of X  (or Y ). Therefore, the probability distribution of U  can be calculated as 

for 0,1, 2,3,...u   
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0 0

0 0 0

2

0

( ) ( ) ( | ) ( ) ( ) ( )

!
( ) ( )

( )! ! ! ( )! !

!

! !( )!

u u

y y

u y y u y yu u u

y y y

y u y

y

P U u P X Y u P X Y u Y y P Y y P X y u P Y y

e e u e e
P X u y P Y y

u y y u u y y

e u

u y u y

   



   

 

 

     

  






            

     
          

           

 
  

 

 

  

2 2 2

0

(2 )
( ) .

! ! !

uu u
y u y u

y

ue e e

yu u u

   
   

  




 
   

 
 

 

Note that the probability function of U  is similar to the probability function of X  (or Y ). The only 

difference we have 2  instead of   and therefore the probability distribution of  U  is  

2( ) (2 ) / ! , 0,1,2,...uP U u e u u     . 

 

Generating Function Technique: We have studied some of generating functions in the previous 

sections. If X  is a random variable with probability (or probability density) function ( )f x , the moment 

generating function of X  can be calculated as ( ) ( )t X
XM t E e . Moreover, X  and Y  are two 

independent random variables with moment generating functions ( )XM t  and ( )YM t  respectively, 

the moment generating function of U aX bY   is 

   
( ) )( ) ( ) ( ) ( ) ( ) ( ) ( )t aX bY taX tbY

U aX bY X YM t M t E e E e E e M at M bt
    . 

 If the moment generating function is similar to a moment generating function of a special random 

variable then their distributions are similar. 

 
 Example: a) Let X  and  Y be two independent random variables with the same probability 

function given below:  

( ) / ! , 0,1,2,... , 0xP X x e x x     . 

 The moment genarating function of X  (or Y ) is 

( 1)

0 0 0

( )
( ) ( ) ( ) / !

'

t t
t x

tX tx tx x e e
X

x x x

e
M t E e e P X x e e x e e e e

x

    


  
   

  

         . 

Suppose we want to find the distribution of U X Y  . Since X  and Y two independent random 

variables with the same moment generating function ( 1)( )
te

XM t e   the moment genarating 

function of U  can be written as 

( 1) ( 1) 2 ( 1)( ) ( ) ( ) ( ) ( )( )
t t te e e

U X Y X YM t M t M t M t e e e    
     

which is the same moment generating function of X  (or Y ) except we have 2  instead of  . 

Therefore their probability distributions (U  and X ) are similar. All we need to do is to put 2  for  . 

That is, the probability distribution of U  is  
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2( ) (2 ) / ! , 0,1,2,...uP U u e u u    . 

Note that this is the same probability function as we have calculated directly. 

b) Let X  and Y  be two independent random variables with the same probability function given 

below: 

 1( ) ( ) , 0,1 ; 0 1 and 1x xP X x P Y x p q x p q p          

Since, their probability functions are the same their moment generating functions are also the same. 

the moment generating function of X  is calculated as 

 
1

0

( ) ( ) ( )t X t x t
X

x

M t E e e P X x q pe


     . 

Now, we want to find the distribution of U X Y  . Since they are independent random variables, 

the moment generating function of U  is calculated as 

2( ) ( ) ( ) ( ) ( )( ) ( )t t t
U X Y X YM t M t M t M t q pe q pe q pe       .  

 Now, consider a random variable Z  with the probability function  

22
( ) , 0,1,2 , 0 1 and 1x xP Z x p q x p q p

x

 
       

 
 

and the moment generating function of Z  is 

2 2
2 2 2

0 0

2 2
( ) ( ) ( ) ( )t Z t x x x t x x t

Z
x x

M t E e e p q pe q q pe
x x

 

 

   
       

   
   

which is the same function as ( )UM t  and therefore their distributions are similar. That is, the 

probability function of U  is 

22
( ) , 0,1,2u uP U u p q u

u

 
   

 
. 

c) let X  and  Y  be two independent random variables with the following probability density 

functions.  The probability distributions are given as for  ,x y    and 0x  , 0y  , 

2

22

1 1
( ) exp ( ) ,

22
X x

xx

f x x x
 

 
    

 
 

 

2

22

1 1
( ) exp ( ) ,

22
Y y

yy

f y y y
 

 
    
 
 

. 

Their moment generating functions are calculated as  

2 2

( ) exp
2

x
X x

t
M t t




 
  

 
 

   and  

2 2

( ) exp
2

y
Y y

t
M t t




 
  
 
 

. 

The moment generating function of U X Y   is calculated as  
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2 2 2 2

2 2 2 2 2

( ) ( ) ( ) ( ) exp exp
2 2

( )
exp ( ) exp

2 2

x x
U X Y X Y x x

x x
x y

t t
M t M t M t M t t t

t t
t t

 
 

  
  



   
       

   
   

   
       

  
  

 

where x y     and 
2 2 2

x y    .  As it is seen the moment generatin function of U  is similar 

to the moment generating function of X  (or Y ) and therefore their probability density functions are 

also similar. That is, the probability density function of U X Y   is  

 
2

22

1 1
( ) exp ( ) ,

22
Uf u u u

 

 
    

 
 

where x y     and 
2 2 2

x y    .  

 


