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WEEK 6 

6. Discrete Probability Distributions 

 

In this part of the class we are going to review e few special discrete probability distributions 

(Uniform, Bernoulli, Binomial, Geometric, Negative Binomial, Hypergeometric and Poisson). First we 

have to mention that there are so many discrete distributions in the literature. From any finite sum of 

a sequence you can obtain a discrete probability function. In this part of the class, we are going to give 

the probability function of the distribution and calculate the mean and the variance. We will also 

calculate some probabilities.  

 

1. Discrete Uniform Distribution: 

Consider a discrete random variable with the range 1 2{ , ,..., }X nD x x x . Consider a probability 

function 
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Notice that the function is a probability function because 

1 1

1
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i
x D i i

f x P X x
n  

      . 

We can also calculate the mean and the variance of the distribution as follows: 

1 1 1
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X
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E X x f x x P X x x x x
n n   

          

and  
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E X x f x x P X x x x
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and therefore the variance can be calculated as 

 2 2 2 2 2 2 2

1 1 1

1 1 1
( ) ( ) ( ( )) ( ) ( )

n n n

i n i n i n
i i i

Var X E X E X x x x x x x
n n n  

          .  

Example: Consider a discrete random variable having the following probability function: 

 
, 1,2,...,

( ) ( )
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f x P X x
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The constant c  is determined as  
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1
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        

and thus the probability function can be written as  
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1/ , 1,2,...,
( )

0 , .

n x n
f x

elsewhere


 


 

 Mean and the variance can be calculayed as  
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and  
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and therefore the variance can be calculated as 
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.  

 2. Bernoulli Distribution:  

 Consider an experiment that has only two possible outcomes like tossing a coin (there are only two 

possible outcomes head or tail). That is, we have only two possible outcomes, say success or failure, 

denoted by S  and F . Therefore the sample space is { , }S F  . Such an experiment is called a 

Bernoulli experiment. Define a random variable X  as 

 

:

0 ,
( )

1 ,

X

w F
w X w

w S




  



     

 Such a random variable is called a Bernoulli random variable. The random variable has a range 

{0,1}XD   which is a countable subset of the real line so the random variable is discrete. Notice that 

( ) ({ }) ({ : ( ) 1}) ( 1)P success P S P w X w P X     . Denote the probability of observing a success as 

p . Therefore the probability of observing a failure will be 1 p  say q . Thus, the probability function   

 
1 , 0,1

( )
0 ,

x xp q x
f x

elsewhere

 
 


 

or simply 

 1( ) , 0,1x xP X x p q x     

 This is a probability function known as Bernoulli probability function. If a random variable has a 

probability function like this we say that X  is distributed as Bernoulli and denoted by ~ ( )X Bern p . 

Note that  

 
1 1 1

1

0 0 0

( ) ( ) 1x x

x x x

f x P X x p q q p

  

          

and for any integer k  the kth moment of the Bernoulli random variable is 
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1 1

1 0 1 1 1 1

0 0

( ) ( ) 0 1k k k x x k k

x x

E X x f x x p q p q p q p 

 

      . 

 This means that any moment of a Bernoulli random variable is the probability of a success. That is, 

( )kE X p . 

 For 1k   ( )E X p   and for 2k   2( )E X p  then we can calculate the variance of Bernoulli 

distribution as 2 2 2( ) ( ) ( ( )) (1 )Var X E X E X p p p p pq       .  

 The moment generating function is 

 
1 1

1

0 0

( ) ( ) ( )tX tx tx x x t
X

x x

M t E e e P X x e p q q pe

 

       .  

 
 3. Binomial Distribution:  

 Consider an experiment of repeating a Bernoulli experiment n  time. At each trial the probability of 

observing a success is the same and the trials are independent of each other. Such an experiment is 

called a Binomial experiment. 

 When we repeat a Bernoulli experiment n  times let a random variable X  counts the number of 

successes. Therefore the random variable X  has range {0,1,2,..., }XD n . Let S  denotes a success 

and F  denotes a failure. Then possible observations can be obtained as: 

F S S F F . . . . F S S. 

 
 The probability of observing a success is p  ( ({ })P S p  and therefore probability of observing a 

failure will be q  namely ({ }) 1P F q p   ). We look at the probability observing x  number of 

successes (each having probability p ) and the rest will be a failure (each having the probability as q ) 

and they are independent. Moreover, the x  successes can be observed any time in n  trials ( x  

successes can be arranged into n  cells). The probability function can be written as  

 ( ) , 0,1,2,...,x m xn
P X x p q x n

x

 
   

 
 . 

 This is a probability function because 

 
0 0

( ) ( ) ( ) 1 1.

X

n n
x m x n n

x D x x
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P X x P X x p q p q

x



  

 
        

 
     

 If a random variable X  has a probability function as given above, we say that X  is distributed as 

Binomial with parameters n  and p  denoted by ~ ( , )X Binom n p . The moment of Binomial 

distribution can be calculated directly but if we consider that a Binomial random variable is a sum of 

Bernoulli random variables, the moments can be calculated much easily. Let 1X  be a random variable 
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which counts the number of successes at the first trial (it is either 0  or 1 ) and 2X  be a random variable 

which counts the number of successes at the second trial (it is again either 0 or 1 ) and continue until 

nX  which is a random variable which counts the number of successes at the nth trial (it is again either 

0  or 1 ) then a Binomial random variable X  is a sum of independent Bernoulli random variables. 

Therefore a Binomial random variable X  which counts the number of successes in n  independently 

repeated Bernoulli experiment can be considered as a sum of independent Bernoulli random variables 

as 1 2 ... nX X X X    . Remember that if 1 ~ ( )X Ber p  then 1( )kE X p  for all k  and therefore 

1( )E X p  and 1( )Var X p q . Therefore the expected value and the variance of Binomial distribution 

are calculated as  

 1 2 1 2( ) ( ... ) ( ) ( ) ... ( ) ...n nE X E X X X E X E X E X p p p n p              

and  

  1 2 1 2( ) ( ... ) ( ) ( ) ... ( ) ...n nVar X Var X X X Var X Var X Var X pq pq pq n pq             . 

That is, if ~ ( , )X Binom n p  then ( )E X n p  and ( )Var X n pq . 

 Remember that if 1 ~ ( )X Ber p  then the moment generating function of 1X   is 
1
( ) t

XM t q pe   

and the moment generating function of the sum is the product of the moment generating functions 

and therefore the moment generating function of a Binomial random variable X  can be obtained as 

  1 2( ... )

1 1

( ) ( ) ( ) ( )n

i

n n
t X X X t t n

X X
i i

M t E e M t q pe q pe
  

 

       . 

 That is, if ~ ( , )X Binom n p  then the moment generating function of X  is ( ) ( )t n
XM t q pe  . 

 
 Example: Consider an experiment of tossing a coin three times. Then all possible outcomes of this 

experiment is { , , , , , , , }HHH HHT HTH THH TTH THT HTT TTT  . Define a random variable as 

 

:

0 ,

1 , , ,
( )

2 , , ,

3 , .

X

w HHH

w HHT HTH THH
w X w

w TTH THT HTT

w TTT







  


 

  

 Notice that the range of the random variable is {0,1,2,3}  which counts the number of tails in the 

experiment. Define a probability measure for any subset of   as ( ) ( ) / 8P A n A  where ( )n A  

represents the number of elements in A . The related probabilities and probability function of the 

random variable is given below: 

       ( 0) ({ }) 1/ 8P X P HHH     

 ( 1) ({ , , }) 3 / 8P X P HHT HTH THH     

 

X x  0  1  2  3  

( )P X x  1/ 8  3 / 8  3 / 8  1/ 8  
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 ( 2) ({ , , }) 3 / 8P X P TTH THT HTT     

 ( 3) ({ }) 1/ 8P X P TTT     

   
3

3 1 1
( ) , 0,1,2,3

2 2

x x

P X x x
x


    

      
    

.  

 Using this probability function, we can calculate the probabilities as follows: 

  ( 1) 1 ( 1) 1 ( 0) 1 (1/ 8) 7 / 8P X P X P X            

  (1 3) ( 1) ( 2) (3 / 8) (3 / 8) 6 / 8.P X P X P X           

 

 4. Geometric Distribution : 

 Consider an experiment of repeating a Bernoulli experiment until we observe the first success. Such 

an experiment is called a geometric experiment. Let X  be a random variable which counts the number 

of trials until we observe the first success. Such a random variable is called a Geometric random 

variable. Again, at each trial the probability of observing a success is the same. That is, ({ })P S p  and 

({ })P F q . That is we may have a sequence of trials as 

F F F . . . . . F S 

 The last observation will be a success (because we will stop when we observe a success). Since the 

probability of observing a success or a failure are the same at each trial and having independent trials 

we can write the probability function of a Geometric random variable as 

  1( ) , 1,2,...xP X x p q x       

 If a random variable X  has a probability function given above, we say that X  distributed as 

geometric and denoted by ~ ( )X Geo p . The probability function can also be given by 

 
1 , 1,2,...

( )
0 ,

xp q x
f x

elsewhere

 
 


  

 This function is actually a probability function because 

 1

1 1 0

1
( ) 1

1

x y

x x y

p
f x pq p q p

p p

  


  

    


   .   

 The mean and the variance of a geometric random variable (can be calculated by using the property 

of the interchangeability of the derivation and infinite sum) are found to be ( ) 1/E X p   and 

2( ) /Var X q p  . 

 Let ~ ( )X Geo p  and try to calculate ( )P X n . Note that 

   
1

1

1 1 0

1
( ) 1 ( ) 1 ( ) 1 1 1

1

nn n n
x y n

x x y

q
P X n P X n P X x pq pq p q

q




  

 
              

  
   . 

 Let s and t  be two integers such that s t  and let us try to calculate the conditional probability

( | )P X s X t  .  
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 Note that if s t  then { } { }X s X t    which implies that { } { } { }X s X t X s     . Therefore 

from the definition of the conditional probability we calculate ( | )P X s X t   as 

 
( , ) ( )

( | ) ( )
( ) ( )

s
s t

t

P X s X t P X s q
P X s X t q P X s t

P X t P X t q

  
        

 
. 

 That is, ( | ) ( )P X s X t P X s t      which is known as the memoryless property of the random 

variable X . Among all the discrete probability distributions the Geometric distribution is the one that 

satisfies the memoryless property.  

 Example: Suppose two friends are playing a coin tossing game. The first one who obtains head the 

game will be over. That is, if player I get a head the game will be over otherwise the second player will 

toss the coin. If the second player (at his/her first trial) gets a head he/she will win the game and the 

game will be over again. That is the game will continue until one gets a head. Let us try to calculate the 

probability of the first player wins the game.  

 Note that the player wins the game at his/her first trial or second trial or so on. Therefore the 

probability can be calculated as 

 

3 5 7

2

2 4 6 2
0

1 1 1 1
( ) ...

2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 4 2
1 ... .

2 2 2 2 2 3 / 4 2 3 32 2 2 1 (1/ 2 )

x

x

P player wins





   

      
                      



  

 

 5. Negative Binomial Distribution : 

 When we repeat a Bernoulli experiment until we observe the first success the number is a 

geometric experiment and the random variable which counts the number of trials is a geometric 

random variable. Now, consider an experiment of Bernoulli trials until we observe the r  successes. 

Now we have r  independent geometric experiments. Let X  be a random variable which counts the 

number of trials until we observe the rth success. Such an experiment is called a Negative Binomial 

experiment and the random variable X  is called a Negative Binomial random variable. Notice that at 

each trial the probability of observing a success is the same and the trials are independent of each 

other.  

 As we have reviewed in Binomial distribution, let 1X  be a random variable which counts the 

number of trials until we observe the first success and after we observe the first success let 2X  be a 

random variable which counts the number of successes until we observe the first success (in total the 

second success) and continue defining the random variable rX  be a random variable which counts 

the number of trials until we observe the first success after we observe the (r-1)st success. Therefore, 

the random variables 1 2, ,..., rX X X  independently distributed geometric random variables. 
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Therefore, the random variable  1 2 ... rX X X X     is a random variable which counts the number 

of trials until we observe the rth success. The probability function of X  is given by, 

 
1

( ) , , 1, 2,...
1

r x rx
P X x p q x r r r

r

 
     

 
    

 A random variable having the above probability function is said to be distributed as Negative 

Binomial and denoted by ~ ( , )X NB r p . The mean and the variance of a Negative Binomial random 

variable can be calculated by using the mean and the variance of Geometric distribution. Since a 

negative Binomial random variable is a sum of independent Geometric random variable, the mean and 

the variance 1 2 ... rX X X X     is calculated as 

  1 2 1 2

1 1 1
( ) ( ... ) ( ) ( ) ... ( ) ...r r

r
E X E X X X E X E X E X

p p p p
              

and  

 1 2 1 2 2 2 2 2
( ) ( ... ) ( ) ( ) ... ( ) ...r r

q q q rq
Var X Var X X X Var X Var X Var X

p p p p
             . 

That is, if ~ ( , )X NB r p  then ( ) /E X r p  and 2( ) /Var X rq p .  

 

6. Hypergeometric Distribution : 

Assume that there are N  balls in a box and a  of those balls are red, N a  are blue. We take n  

number of balls at the same time from the box and count the number of red balls from those n  balls. 

Let X  be a random variable which counts the number of red balls in the experiment. The probability 

function of the random variable X  is given by 

( ) , 0,1,2,...,

a N a

x n x
P X x x n

N

n

  
  

  
  

 
 
 

 .  

Here, 

 
!

!( )!

N N

n n N n

 
 

 
,  

the mean and variance of a hypergeometric random variable have been calculated as 

 ( )
na

E X
N

   and ( ) 1
1

N n an a
Var X

N N N

  
  

  
. 

 Example: In a government office 3 Statistician, 4 Mathematician and 3 Econometrician are working. 

From the office a committee of 3 people will be selected randomly. Calculate the probability that there 

will be at least one statistician in this committee.  
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    Solution: Let X  be a random variable which counts the number of statisticians in that committee. 

Note that the random variable is distributed as hypergeometric with 3n  , 3a   and the rest is 7 (not 

statisticians). We want to calculate ( 1)P X  . Since, 

 ( 1) 1 ( 1) 1 ( 0)P X P X P X        

it is enough to calculate ( 0)P X  . Note that 

 
10 10! 7!8.9.10 8.9.10 720

120
3 3!7! 3!7! 6 6

 
     

 
, 

3
1

0

 
 

 
 and 

7 7! 4!5.6.7 5.6.7
35

3 3!4! 3!4! 6

 
    

 
 

and therefore, we calculate the required probability as 

3 7

0 3 1(35) 35 85 17
( 1) 1 ( 1) 1 ( 0) 1 1 1

10 120 120 120 24

3

P X P X P X

  
  
  

              
 
 
 

.    

7. Poisson  Distribution :  

So far, we obtained the probability function of a discrete random variable after we defined the 

experiment. In those experiments we were repeating a Bernoulli experiment and counting the number 

of successes or the number of trials. Now, consider an experiment of counting the number of successes 

in a continuous period (like time). For example, we count the number of customers enter to a store 

between 12:00 to 13:00 (count the number of telephone calls receive between 20:00 to 21:00). 

Obviously, here the number of customers who enter to a store (or telephone calls received by the 

operator) are discrete and the period of time is continuous. Such an experiment is called a Poisson 

experiment.  Let   be the expected number of successes ( 0  ) in this experiment then the 

probability to observe x  number of successes in the experiment is given by 

( ) , 0,1,2,...
!

xe
P X x x

x



    . 

This is a probability functions because (Taylor series expansion of e )  

0 0 0

( ) 1
! !

x x

x x x

e
P X x e e e

x x


     

 

  

       .  

 If a random variable X   has a probability function given above, we say that X  is distributed as 

Poisson with parameter   and denoted by ~ ( )X Poisson  . Again using the Taylor series expansion 

we can find the moment generating function of Poisson random variable. That is, the moment 

generating function of the Poisson distribution is 

 
0 0 0

( 1)

0 0

( ) ( ) ( )
! !

( ) ( )

! !

t

x x
t X tx tx tx

X
x x x

t x t x
t e

x x

e e
M t E e e P X x e e

x x

e e e
e e e e

x x

 


   

 

 

   

  

 
  

 

    

   

  

 

 . 
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 Simply, the moment generating function of the Poisson distribution is ( 1)( )
te

XM t e  . Notice that 

we can use the moment generating function of a random variable X  to calculate the moments. Note 

that, 

    
0

00

( )
( ) ( )

k k
t X k t X kX

k k t
tt

d M t d
E e E X e E X

dt dt 


     

The first two derivatives of the moment generating function are  

 ( 1)( )
tt e

XM t e e     and ( 1) 2 ( 1)( ) ( )
t tt e t e

XM t e e e e       

and therefore the first two moments of the Poisson distribution are  

( 1)
0

0

( ) ( )
tt e

X t
t

E X M t e e 




    

 2 ( 1) 2 ( 1) 2
0

0

( ) ( ) ( )
t tt e t e

X t
t

E X M t e e e e     




     . 

Thus the variance of Poisson distribution is calculated as 

 2 2 2 2( ) ( ) ( ( )) ( )Var X E X E X          . 

 
Example: A restaurant at Kızılay Square opens the doors at 7:00 o’clock in the morning. They plan 

to change their opening hour from 7:00 to 8:00. Before they made the final decision they conduct 30 

days experiment and obtain that 5 customers in the average come to the restaurant (30 days-average 

is 5 customers). For a certain day at the same time period find the probability that less than 3 

customers will come to restaurant between 7:00 to 8:00 o’clock in the morning.  

Solution:  

Let X  be a random variable which counts the number of customers between 7:00 to 8:00 o’clock 

in the morning. Here, 5   which is the average number of customers come to the restaurant 

between 7:00 to 8:00 o’clock in the morning. We want to calculate ( 3)P X   when X  is distributed 

as Poisson with 5  . The probability function of X  will be  

 
55

( ) , 0,1,2,...
!

xe
P X x x

x



    

The probability can be calculated directly as 

 5 0 5 1 5 2
5 5

( 3) ( 0) ( 1) ( 2)

5 5 5 25 37
1 5 0.12465.

0! 1! 2! 2 2

P X P X P X P X

e e e
e e

  
 

      

       
                          

 

 
  8. Multinomial Distribution : 

We have studied a few univariate special discrete distributions. The multinomial distribution (or 

multivariate binomial) is a well known multivariate discrete probability distribution that we are going 

to summarize below.    
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In Bernoulli experiments, there are are only two possible outcomes (succress or failure). That is, 

there is only one succes at each trial. If there are more possibe success in the experiment it is not a 

bernoulli experiment any more.  

Let 1 2, ,..., kE E E  be the outputs of an experiment (for example, in a box there are k  different 

colors of a ball and we randomly select n  balls by replacement. 1E  is the output of first color, 2E  is 

the second color etc.) And let iX  counts the number of the event iE  occurs. Assume that the 

probability of the event occurs is ip , that is ( )i iP E p . Then the joint probability function of a random 

vector 1 2( , ,..., )kX X X   is 

1 2
1 1 2 2 1 2

1 2

!
( , ,..., ) ...

! !... !
kxx x

k k k
k

n
P X x X x X x p p p

x x x
      

where 1 2 ... 1kp p p    , 1 2 ... kx x x n     such that 0,1,2,...,ix n .   

 
 Example:  Assume that there are 5 black, 4 red and 3 yellow balls in a box. By replacement we 

randomly select 6 balls from the box. Suppose we want to find the probability that we observe 3 black, 

2 red and 1 yellow balls. 

 Note that, 1 { }E black ball ,  2 { }E red ball  and 3 { }E yellowball  and note that these events 

are disjoint and 1 1( ) 5 /12P E p   , 2 2( ) 4 /12P E p   and 3 3( ) 3 /12P E p  . We randomly select 

6 balls from the box and therefore 6n  . Let 1X  be the random variable which counts the number of 

black balls among all these 6 balls, 2X  be the random variable which counts the number of red balls 

among all these 6 balls and 3X  be the random variable which counts the number of yellow balls among 

all these 6 balls. Therefore we need to calculate 1 2 3( 3, 2, 1)P X X X   . This probability can be 

calculated by using 

    31 2
1 1 2 2 3 3 1 2 3

1 2 3

!
( , , )

! ! !

xx xn
P X x X x X x p p p

x x x
     

and putting 6n  , 1 5 /12p  , 2 4 /12p   and 3 3 /12p    we calculate the required probability as 

 

3 2 1 3 2 1

1 2 3 6

6! 5 4 3 6! (5) (4) (3)
( 3, 2, 1)

(3!) ( 2!) (1!) 12 12 12 (3!) ( 2!) (1!) (12)

4320000 625
0.12056

35831808 5184

P X X X
     

         
     

  

. 


