WEEK 8

8. Sampling and Sampling Distributions

In order to make any statistical inference about the population (parameters), we repeat the
experiment many times (say n times) and based on these experimental observations we make
some statistical inference about the population unknowns (usually the mean and variance).

The goal of any field of positive science is to understand the nature (which we will call
population). Understanding means that to get some information about the unknowns (which we
call parameter/parameters). The parameters are non-measurable real numbers which
characterize the population.

Let X,, X,,..., X,, be a set of random variables.

X, is the random variable at the first trial
X, is the random variable at the second trial

X4 is the random variable at the third trial

X, is the random variable at the nth trial

Definition: If the random variables X, X,,..., X, are independent and identically
distributed, then it is called a random sample.
That is, a random sample is X, X,,..., X iid f(x;6) . Here @ is the parameter which

characterize the population. Actually, a random sample does not have to be independent and
identically distributed random variables but in our class when we say “a random sample” we

will understand that X;, X,,..., X, independent and identically distributed random variables

with a probability (or probability density) function f (x;6).



Example: Consider an experiment of tossing a coin 5 times and repeat the experiment 5
times. That is, the first person tosses a coin 5 times. Then the second person tosses the same
coin 5 times and it continuous until the fifth person. What about the random variables:

X, is arandom variable which counts the number of tails at the first trial (say 2 tails),

X, is a random variable which counts the number of tails at the second trial (say 3 tails),

X5 is a random variable which counts the number of tails at the third trial (say 3 tails),

X, is a random variable which counts the number of tails at the fourth trial (say 4 tails)
X5 is a random variable which counts the number of tails at the fifth trial (say 3 tails).
Note that X;, X,, X3, X4, X5 is a random sample (of size 5) and for each i=1,2,3,4,5,
X; ~ Binom(5,1/ 2). Since each X; is arandom variable, it is a function from the sample space
to real line ( X; : QQ — R). As it is given above, we observe the following values as:
Xiw)=x,=2, Xy(W)=X%, =3, X5(W)=x%3=3,X,(W) =%, =4, X5(W) = X5 =3.
These values (X, X5, ..., X, ) are the sample values.

Note that, X; ~ Binom(5,1/2),

E(X)=np=5(1/2)=2.5 and Var(X)=npg=5(1/2)(1/2)=1.25.

Remember the normal distribution again. If the random variable X is normally distributed
with mean x and variance o2 . Note that E(X)=pu and Var(X)=o?. Define the standard
normal random variable Z=(X —u)/o and it is obviously, Z ~N(0,1) and moreover

X=u+ol.

Z~N(@©,) and X =u+oZ
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Here, ux and o° are the

parameters to be estimated. That
is, u is the population mean and

o? is the population variance.

Here, x and o? are the parameters to be estimated. That is, x is the population mean and o’

is the population variance. In order to estimate the population mean and the population variance,



we use the sample mean and and the sample variance (the reasons to be used these estimators
will be explained later) defined as

_ n n _
X, :12 X; , sample mean , S,f :%Z(Xi - Xn)2 , sample variance.
Nij=1 nN—L1j=

A) Let X;, X,,..., X, iidN (u,0?) and define the sample mean and the sample variance as it

is given above:
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Since the sum of independent and normally distributed random variables is also normally

distributed random variable we have X, ~ N (o2 I n) which implies that
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Note that if we have a random sample from a N(u,o?) distribution (or population), the
random variable \/ﬁ()?n — 1)/ o is distributed as standard normal and therefore the standard

normal distribution (N (0,1) can be taken as a sample distribution. The test statistic (will be

explained later) Z can be used to make any statistical inference about the population mean u

2 is known.

when the population variance o
B) Now let wus consider the sample variance, S,f. Remember  that
Var(X) = E(X?) - (E(X))?. Since, E(X) = and Var(X) =oc? we have E(X?) =02+ 1.

Note that the sample variance S? can also be wirtten as
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The result iis also true for non-normal sample. That is, E(S?) = o and therefore the sample

variance S? can be used to estimate.

Theorem (without proof): Let X,, X,,..., X,, be a random sample from normal population

with mean x and variance 2. That is, Xy, X,,..., X, iid N(x, o) random variables. The
sample mean and variance are
Kn =%éxi ’ Sr% :ni—lé(xi —Xn)2
Then
a) X,~N(uo?ln),
b) X, and S? are independent,

n—1)S2
c) % = Iﬁ—l :
(o)

Using this theorem, we can calculate the expected value of the sample mean much easily.
Remember that if X ~ 2 then E(X) = p and Var(X) =2p. Since, (n—1)S?/ &% ~ x5, the
mean of the sample variance, we have

E((n-1)S? /%) =(n-1) and Var((n-1)S? / o%) = 2(n—1)
and therefore, E((n—1)S2 /%) = (n-1) = E(S?) = o>. Moreover, we can also calculate the

variance of the sample variance by using the theorem (c)

ar(%} =Var(y2,)=2(n-1)= (n _41)2 Var(S?) =2(n-1) = Var(S?) = 6_4 .
o o) n-1



Since, Sﬁ can be taken as an estimator of the population variance and we have the
distrtibution of S,f , It can be used to make statistical inference about the population variance.

The distribution of S,f is the chi-square and therefore, the chi-square distribution can be

considerd as a sample distribution. When we were discussing the Gamma distribution, we have
seen that the chi-square distribution is a special case of the Gamma distrtibution. The chi-square

distribution can also be obtaine from the normal distribution. That is, if Z ~N(0,1) then
Z? ~ 4% and moreover if Z;,Z,...,Z, are independent standard normal random variables, then
212+222+..+Zk2 ~;(|f.

C) If X, X,,..., X, be arandom sample from N(z,o?) we know that

(n—lz)sr? ~Zz

n-1-

M~ N(0,1) and
(o2

That is, the normal and chi-square distributions are sample distribution. We also know that
the sample mean and the sample variance are independently distributed random variables.

t _distribution: Consider two independent random variables X and Y such that

X ~N(0,1) and Y ~ x5 . Then the probability density function of T =X /Y / p is

iGN
teR .

fr(t)= :
+1 (p+1)/2
r 237 Jiomr (1“2}

P

If a random variable T has the probability density function as given above we say that T

is distributed as t with p degrees of freedom (Student’s t distribution) and denoted by T ~t,

. The graph of the probability density function of the t distribution is given below.

w

The graph of the probability density function of t distribution with 2 degrees of

freedom



As we are going to see later, if we want to make any statistical inference about the mean of
a normal distribution, we use the Z = \/ﬁ()?n —u) /o statistic. If the variance is a parameter,

then it should be estimated. Consider any statistical inference about the normal mean x when

2

o2 is unknown. Since o

Is a parameter (unknown) we use its estimator Sﬁ . That is,

_In(X,—u)
Sn
to make any statistical inference about mean.

T

Notice that if X, X,,..., X, is a random sample from a N(x,o?) population, we have

. 2
~ N(0,1) and %~ 7.

\/ﬁ()zn _/u)
O

Moreover the sample mean and the sample variance are independent (X, and Sﬁ are

independent). Therefore,

K —p) WKy —mlo K -mle

= = = 1
S, Js2io®  \n-0s2/c?/(n-1)

That is,

T =n(X, - )/ S,~t,4

which is another sample distribution which can be used to make any statistical inference about

T

2

the normal mean x when the variance o is unknown.

The t distribution is commonly used in many statistical problems (hypothesis testing,
confidence intervals and regression analysis) that we are going to discuss some of the
applications. Since it is very useful distribution the probabilities of the distribution for various
degrees of freedom have been tabulated and they can be found in any basic statistical textbooks.

You can even find these probabilities by using your mobile phones (download the application
“probability distributions”, for example if t ~t,, then P(t>2)=0.0367 and if X ~ Z120 then
P(X >12) =0.285 and more many distributions you can find the application).

D) Another sample distribution is the F distribution. Suppose we want to compare two
population mean. In order to make any statistical inference about two population means, we
need to assume that the variances are the same. In order to test (check) the equality of the

variances, we use F statistic. We use F statistic to check the model adequacy in regression
analysis. We will also discuss model fitting and the use of F distribution later.



Note that if two independently distributed random variables X and Y are distributed as chi-
square with p and q degrees of freedom ( X ~ ZS and Y ~ ;(j) respectively, the probability

density function of
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The probability density function of F distribution (for p=4 and q=6)

If arandom variable F has such a probability density function, we say that F is distributed

as F with p and g degrees of freedeoms and denoted by F ~ F(p,q). The graph of the
probability density function of the F distribution is given above.

Let F ~ F(p,q)the the mean of the F disatribution can be calculated from tye mean of
chi-square distributions as shown below. Note that if F ~ F(p,q) the the random varaibles X

and Y are independently distributed ( X ~ ;(f, Y ~ ;(g) such that

Fo X/p
Y/q
and therefore the mean of the F disytribution is

e(F)-g[ X/ g[X E(ﬂj:L,
Y/q p Y qg-2
Example: Let Xq, Xo..., X, ~ N(yx,af) and Y;,Yo ..., Y, ~ N(yy,ai) be two independent

samples. In order to estimate the ratio af /a)z,, a reasonable estimator will be Sr?,x /S%ly af

we want to find the distribution of the ratio of two sample means, the ratio can be rewritten as



(n—-1)S2
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and they are independently distributed random variables, according to the definition given

above it is obvious that the ratio is distributed as F . That is,

Shx ! Smy 2 2
F=—5——~F(M-1m-1) or F=S55x /Sy ~F(n-1m-1).
oy loy
Thus, the F statistic can be used to make any statistical inference about the ratio af /af, (or

to test whether af = a)z, )- And the F statistic can be considered another sample distribution. The

probabilities of the distribution have been tabulated for various degrees of freedoms p and q . these
probabilities are available in any textbook. For example, if X ~F(4,5), then

P(0< X <5.2)=0.95.

The Central Limit Theorem (VERY IMPORTANT)

Note that if X1, X5...,X,, isarandom sample from N (,u,az) population, we know that

f— 2 v —
(DS} 2 g =) _
(o2

n-1

\/ﬁ()zn —,U) _ N(O,l) , tn—l'
O

n

In general, the distribution of the population is unknown.

Note: If arandom sample Xy, X5..., X, we will usually denote thisas X = (X, X5..., Xp)’

. Any function of the sample will be called an estimator. Thatis, T, =T,(X) =T,(X;, X5,..., X;,)

Let Xq,X5...,X,, be a random sample from a population with probability (or probability
density) function f(x;0), E(X;) = and Var(X;)=c” .
If T, =T,(X) =X, then
Xy + X,

Xy + X, + X5 T X+ X, + X, +..+ X,
—,~--, n=

T,=X;, T,=
1 10 72 3 n

1T3=



Definition: Let Xy, X,..., X, be a random sample from a population with probability (or
probability density) function f(x;0), E(X;)=x and Var(X;)= o?. Let T, be any estimator
for the parameter 6. We say that T, converges to the parameter 6 in probability and denoted
by Tn—P>H as n—oo ifforany >0

limP(T,-0>¢=0.

N—»c0

Chebyshev’s Inequality:

Let X be any random variable such that E(X) = x and Var(X) = o2 then
E(X — u)?
P(| X —,u|>8)£%.

Example (Weak Law of Large Numbers, WLLN):

Let Xq,X,..., X, be a random sample from a population with probability (or probability
density) function f(x;6), E(X;)=x and Var(X;) = o2 then the sample mean converges to

the population mean in probability, that is )?n—Pm as n—oo. Similarly, the sample

variance converges to the population variance in probability, namely Sﬁ —P 562 asn—ow.

Before we state the central limit theorem, let us introduce another type of convergence
known as the convergence in distribution.

Definition: Let X, be any sequence of random variables with distribution function F,(x)

and X be a random variable with cumulative distribution function F(x). We say that X,

converges to the random variable X in distribution and denoted by Xn—D>X as n—>ooif

for every X such that F(x) is continuous at the points x, F,(x) > F(x) as n—o.

Theorem (The central Limit Theorem): Let X4, X5..., X,, be a sequence of independent and
identically distributed random variables with probability (or probability density) function

f(x;0), E(X;)=u and Var(X;)=c? suchthat c® <. Then

Jn(X,-4) b
(el

>N (0,1) as n—> .

Note that since



n n

n n n 1
Ex“E(iﬂx‘j 2Xim 2B 2 X ”[néx‘_”]:ﬁo?n—m

Var(i Xi] /iVar(Xi) \/F Jno o
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the central limit theorem can also be stated as

$x,ef$x)
=1 = D , N(0,1) as h—> .
Var(Zn:Xij
i-1

The theorem says that whatever the population is, the sample mean approaches to the
standard normal random variable when the sample size (here n ) is large enough. Usually, the
distribution of the population is unknown and in order to make any statistical inference we need
the normalility assumption. The CLT provides such assumption when the data do not obey the
normality. Using the central limit theorem (CLT), we can do any statistical inference if the data
do not come from a normal population. Also we can calculate many probabilities by using the
CLT.

Example: Consider an experiment of tossing a coin 100 times. Find the probability of
observing more than 60 tails.

The probability can be calculated directly by using the binomial distribution. Note that if
X is a random variable which counts the number of tails in the experiment it is distributed as
binomial with p=1/2 and n=100. That is X ~ Binom(1/2,100) and we want to calculate

P(X > 60) . Note that the probability function of X is

X 100—x
P(X =X)=(lgoj(%j Gj , x=0,1,2,...,100

and the exact probability is calculated as (by computer) as

X 100-x
P(X >60)= > P(X =x)= (1)?0)(1) EEJ

x=61 X=61 2 2

——————— =0.02844.
X=61 X! (100 — X)I

2

(1}1"0 100 100!

This probability can easily calculated by using the CLT approximately. Let X; be a random

variable which counts the number of tails at the ith trial (which is either 0 or 1 ). As it is

10



obviously seen that each random variable X; ~ Bern(1/2) and the sum of these random
variables gives the total number of tails in 100 trial. That is
100 100 1 100 1 1
X=X, E(Z Xi) :100(—j =50 and Var(z Xi) :100(—j(—j =25
i-1 i-1 2 i-1 2)\ 2

and therefore by the central limit theorem we calculate the probability as

100X £ 100X

P(X >60)=P| 3 X, >60|=P E - (é ij 00 -0

( > )_ Z i> - 100 >
Var(zxi]

i=1
i=1

= P(Z >2)=0.0228.

As you notice that this probability is very close the exact probability calculated by

computer. If we had more experiment we get much closer number the the exact probability.
Example:
Let X4, X5..., X, be a sequence of independent and identically distributed random variables

with probability (or probability density) function f(x;8) and E(X;) =« and Var(X,) = ol .

Then we know that

N (Xo-4) o >N(0,1) as n—o0 and S2—F 5% as N>
(o2
where
_ 1n 1 n _
Xo==2X; and S7=——3 (X; = X,)* .
nic n-1i3

Consider the t statistic to make any inference about the population mean:

InKa—p) _ In(Xy-m)lo o
" S, S, /o

t >N(0,1) as n —oo.

That is, for large n the t statistic also congerges to normal distribution, tn—D>N(O,1) as

n—oo. That is, if we have large number of observations, we can still use the normal
approximation. However if we do not have large number of observations, we should prefer to
use t distribution. In summary,

a) For larger number of observations, we use Z distribution

b) For small number of observation, we use t distribution.

11



Order Statistics:

In general, the distribution of the sample is unknown. The order statistics are very helpful
to get an intuitive information about the sample. Let X4, X,..., X, be a random sample from a
population whit a probability (or probability density) function f(x;0) and cumulative
distribution function F(x;#). Using the values of the order statistics we produce some plots

(Box-Cox plot, normal probability plot, histogram etc.) to get some distributional properties of
the sample. First of all, we need to define the ordering the sample. Consider two random

variables X; and X, defined on the same sample space. We say that X; is smaller than X,
if forany we Q, X;(w) < X,(w) then we define the order statistics as

X(l) = min{Xl, X2,..., Xn},

X (2) =secondsmallest{Xy, X5,..., X}

X(3) = thirdsmallest{ X, X;,..., Xp}

X(n) = maX{Xl,XZ,..., XI’]}

All these order statistics are function of the sample and therefore these can be considered

as estimators. Moreover, even the random sample X4, X,..., X, is independent and identically

distributed random variables, the order statistics defined as a function of the same sample are

notindependent and as it is clearly seen we have X ) < X5y < X(3) <...< X(py) such an ordering.

Based on the order statistics we define some measure of tendencies (median, range, percentiles,

etc.) as given below. First of all the sample range is given by R = Xy — X 1) which is also an

estimator. The sample median M and the midrange V are defined based on the order statistics
as

X((n+1)/2) , N is odd

M = s V:(X(1)+X(n))/2

1 :
S a2y + X2yl o niseven

Example: In the following table, the test scores for 50 students and in the second table

below the ordered values of the tests scores are given.

66 | 71 | 67 | 69 | 75 | 66 | 64 | 70 | 62 | 83
70 |79 |74 | 74 |79 | 94 | 76 | 69 | 88 | 72
84 | 76 | 63 | 70 | 77 | 80 | 77 | 72 | 718 | 73
75 | 78 | 90 | 76 | 62 | 78 | 718 | 72 | 17 | 72

12



72 |59 [ 73 | 75 | 76 | 80 | 56 | 67 | 69 | 80
50 Student’s test scores

The mean and standard deviation are calculated from the sample as

n n
% =13 % =73.66 S2=— (x —X,)? =55.78.
Niz n-1i3
The ordered values are given below.

56 | 59 | 62 | 62 | 63 | 64 | 66 | 66 | 67 | 67

69 | 69 | 69 | 70 | 70 | 70 | 71 | 72 | 72 | 72

72 | 72 | 73 | 73 |74 |74 | 75|75 |75 |76

76 | 76 | 76 | 77 | 77 | 77 | 78 | 78 | 78 | 78

79 | 79 | 80 | 80 | 80 | 83 | 84 | 88 | 90 | 94
50 Student’s test scores in order

Using these ordered values, we observe that

X(l) =56 , X(50) =94 X(25) =74 , X(26) =74 , X(48) =88
and the median, range and midrange are found to be
m= 0.5[X(25) + X(ZG)] = 05(74+ 74) =74, v= (X(l) + X(n)) /2= (56 + 94) [2=75
and r = Xg) — Xq) =94-56=38.
When the data is ordered from the smallest to the largest 50% of all observations are smaller
than the median (here the median is found to be 74). If 25% of all observations are smaller than

or equal to a number (say Q, ) this number is called the first quartile (here Q, =69) and if 75%
of all observations are smaller than or equal to a number (say Q) this number is called the
third quartile (here Q, =78) and finally, the second quartile is the median. We can also
calculate some percentiles of the sample. If 60% of all observations are smaller than or equal
to a number (say ag ) then the number is called the 60™ percentile and similarly if 90% of all
observations are smaller than or equal to a number (say agy ) then the number aq is called the
90" percentile of the sample. Here, these numbers (known as critical values) are calculated as

X(30) + X X(45) + X
_ (30)2 (30):76;76:76 and agy— (45)2 (46):80—;83

Some other values of the percentiles are calculated as follows:

g9 = X(50) =94, ag5 = X(48) =88, a5 =X(3) =62, a = X(7) =56

as0 =81.5.

and
_X©) tXe) _63+64
2

d1o =63.5.
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Using some probabilistic calculations, we can also find the probability distributions of the
order statistics. The following theorem summarizes the distributional properties of order
statistics.

Theorem: Let X4, X,..., X,, be arandom sample from a population whit a probability (or
probability density) function f(x;#) and cumulative distribution function F(x;8). Moreover,

assume that Xy, X(),..., X(y) are the order statistics as defined above. Then
a) The probability (or probability density) function of j™ order statistics X(j) Is

n!

(-0 )
b) The joint probability (or probability density) function of i and j™ order statistics X (i)

Ty fOOFO) ML= F()1" , x e Dy

and X(j) is

n! i-1
f f F
(DG -i-Din—jt DTONECE

*[F(y) - F o1 - F ()™
¢) And finally, the joint probability (or probability density) function of X ), X(2y,-.., Xny

fX(i),X(j) (X, y) =

n
NI () . X <Xp<...<X,
fX(l)lX(Z),.-.,X(n)(Xlaxz,--.,xn): 4

0 , d.y.
(Casella and Berger, 2002, page 229-230).
Example: Let Xq,X,,...,X, be a random sample from U(0,8) distribution. The

probability density function and the cumulative distribution of the uniform distribution is given
by

1/6 , 0 0 0 . x<0
: X

f(x;6)= =X= , F(x;0)=<x/0 , 0<x<48
0 , dy.

1 , X> 6.

a) Let us try to find the probability density function of the n" order statistic X(ny- By using

the theorem given above, the probability density function of the n'" order statistics is written for
0<x<8 by

n! 1/ x\"t x\"" n 4
fy (X0)=——-——=| = 1-= =—X , 0<x<#@
(n) (n-DHY(n-n)1o\ o 0 o"
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or
n _
Xn 1

— , O<x<é@
fxm 60 =10

0 , d.y.
If we do not remember the statement of the theorem, we can still find the probability density

function of the n™ order statistic X(ny by using the distribution function of X,). Remember

that the probability density function is the derivative of the cumulative distribution function.

First of all, let us try to find the distribution function of X, . Let Fx(n)(x) denote the
distribution function of X(,,). Obviously Fx(n) (x)=0 for x<0 and Fx(n) (x)=1 for x>46.
Finally, for 0 < x <& we have
Fx(n) (X) = P(X(n) £ x) = P(max{Xy,..., X} < X) = P(Xy <X, X5 <X,..., Xy £X)
=P(X; <X)P(X, <X)..P(X,, <x) =[P(Xy <X)]" =[x/ 6]" =67 "x".

therefore, the cumulative distribution function and the probability density function of the nt

order statistics Xy are given below.

0 , x<0 n
—X

F(x;0)=:0"x" , 0<x<@ and fx(n)(x): o"
1 , X=0 0 , d.y.

The mean and the variance of the n" order statistic are calculated. First two moments are

-1 0<x<@

0

0
N r.n n 2 N . ntl n_ 2
E(X(qy))=— | X dx=—-6, E(X(py)=— | X —dx=—-6
(X(n)) Hn.([ n+1 Xm) 9”-([ n+2
and therefore, the variance of X .
n 62
Var(Xm) = E(X&)) ~[E(X ()]} = ————
(n) (n) (n) (n+1)2(n+2)

Note that if we set T =(n+1) n~t X(n) the mean and the variance of T are calculated as

n+1 n+1 02
E(TY=E| —X =0 and Var(T)=Var| —X = )
(T) ( n (n)j (T) ( n (n)j n(n+2)
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