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WEEK 8 

 

8. Sampling and Sampling Distributions 

 

In order to make any statistical inference about the population (parameters), we repeat the 

experiment many times (say n  times) and based on these experimental observations we make 

some statistical inference about the population unknowns (usually the mean and variance).  

The goal of any field of positive science is to understand the nature (which we will call 

population). Understanding means that to get some information about the unknowns (which we 

call parameter/parameters). The parameters are non-measurable real numbers which 

characterize the population.  

Let 1 2, ,..., nX X X  be a set of random variables.  

  

1X  is the random variable at the first trial 

2X  is the random variable at the second trial 

3X  is the random variable at the third trial 

     . 

     . 

     . 

nX  is the random variable at the nth trial 

 

 

Definition: If the random variables 1 2, ,..., nX X X  are independent and identically 

distributed, then it is called a random sample. 

That is, a random sample is 1 2, ,..., ( ; )nX X X iid f x  . Here   is the parameter which 

characterize the population. Actually, a random sample does not have to be independent and 

identically distributed random variables but in our class when we say “a random sample” we 

will understand that 1 2, ,..., nX X X  independent and identically distributed random variables 

with a probability (or probability density) function ( ; )f x  .   
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Example: Consider an experiment of tossing a coin 5  times and repeat the experiment 5  

times. That is, the first person tosses a coin 5 times. Then the second person tosses the same 

coin 5 times and it continuous until the fifth person. What about the random variables: 

1X  is a random variable which counts the number of tails at the first trial (say 2 tails), 

2X  is a random variable which counts the number of tails at the second trial (say 3 tails), 

3X  is a random variable which counts the number of tails at the third trial (say 3 tails), 

       4X  is a random variable which counts the number of tails at the fourth trial (say 4 tails) 

       5X  is a random variable which counts the number of tails at the fifth trial (say 3 tails). 

 Note that 1 2 3 4 5, , , ,X X X X X  is a random sample (of size 5 ) and for each 1,2,3,4,5i  ,   

~ (5,1 / 2)iX Binom . Since each iX  is a random variable, it is a function from the sample space 

to real line ( :iX  ). As it is given above, we observe the following values as: 

       1 1( ) 2X w x  ,  2 2( ) 3X w x  , 3 3( ) 3X w x  , 4 4( ) 4X w x  , 5 5( ) 3X w x  . 

These values ( 1 2, ,..., nx x x ) are the sample values.  

 Note that, ~ (5,1 / 2)iX Binom ,  

  ( ) 5(1 / 2) 2.5E X np     and ( ) 5(1 / 2)(1 / 2) 1.25Var X npq   . 

  

 Remember the normal distribution again. If the random variable X  is normally distributed 

with mean   and variance 
2 . Note that ( )E X    and 2( )Var X  . Define the standard 

normal random variable ( ) /Z X     and it is obviously, ~ (0,1)Z N  and moreover 

X Z   .  

 
~ (0,1)Z N  and X Z    

Here,   and 
2  are the 

parameters to be estimated. That 

is,   is the population mean and 

2  is the population variance.  

 

Here,   and 
2  are the parameters to be estimated. That is,   is the population mean and 

2  

is the population variance. In order to estimate the population mean and the population variance, 
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we use the sample mean and and the sample variance (the reasons to be used these estimators 

will be explained later) defined as 

1

1 n

n i
i

X X
n 

   , sample mean  ,     2 2

1

1
( )

1

n

n i n
i

S X X
n 

 

  , sample variance. 

 A) Let 
2

1 2, ,..., ( , )nX X X iid N    and define the sample mean and the sample variance as it 

is given above: 

  
1

1 n

n i
i

X X
n 

   , 2 2

1

1
( )

1

n

n i n
i

S X X
n 

 

  .  

Notice that, 

 
1 1

1 1 ...
( ) ( )

n n

n i i
i i

n
E X E X E X

n n n n

   


 

   
     

 
   

and 

 
2 2 2 2 2

2 2 2
1 1

1 1 ...
( ) ( )

n n

n i i
i i

n
Var X Var X Var X

n nn n n

    

 

   
     

 
  . 

Since the sum of independent and normally distributed random variables is also normally 

distributed random variable we have 
2~ ( , / )nX N n   which implies that 

  
( )

~ (0,1)
/

n nX n X
N

n

 



 
   

or equivalently 

  1 1

1

~ (0,1)

n n

i i
i i

n

i
i

X E X

N

Var X

 



 
  

 

 
 
 

 



 . 

 Note that if we have a random sample from a 2( , )N    distribution (or population), the 

random variable ( ) /nn X    is distributed as standard normal and therefore the standard 

normal distribution ( (0,1)N  can be taken as a sample distribution. The test statistic (will be 

explained later) Z  can be used to make any statistical inference about the population mean   

when the population variance 
2  is known. 

 B) Now let us consider the sample variance, 
2
nS . Remember that 

2 2( ) ( ) ( ( ))Var X E X E X  . Since, ( )E X   and 2( )Var X   we have 2 2 2( )E X    . 

Note that the sample variance 
2
nS  can also be wirtten as 
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    2 2 2

1 1

( 1) ( )
n n

n i n i n
i i

n S X X X nX
 

       

and therefore, 

 

2 2 2 2 2

1 1 1

2 2 2 2 2 2

1 1

2 2

1 1 1
( ) ( ) ( )

1 1 1

1 1
( ) ( ) ( ) (( / ) )

1 1

1

1

n n n

n i n i n i n
i i i

n n

i n
i i

E S E X X E X X E X nX
n n n

E X nE X n n
n n

n n
n

   

 

  

 

     
          

       

   
        

    

 


  

 

2 2n   
2

2( 1)
.

1

n

n





 



  

 The result is also true for non-normal sample. That is, 
2 2( )nE S   and therefore the sample 

variance 
2
nS  can be used to estimate.  

 

 Theorem (without proof): Let 1 2, ,..., nX X X be a random sample from normal population 

with mean   and variance 
2 . That is, 

2
1 2, ,..., ( , )nX X X iid N    random variables. The 

sample mean and variance are  

  
1

1 n

n i
i

X X
n 

   , 2 2

1

1
( )

1

n

n i n
i

S X X
n 

 

  .  

Then 

a)   
2~ ( , / )nX N n  , 

b)   nX  and 
2
nS  are independent, 

c)    
2

2
12

( 1)
~n

n

n S






 . 

Using this theorem, we can calculate the expected value of the sample mean much easily. 

Remember that if 
2~ pX   then ( )E X p  and ( ) 2Var X p . Since, 

2 2 2
1( 1) / ~n nn S     the 

mean of the sample variance, we have  

2 2(( 1) / ) ( 1)nE n S n    and 
2 2(( 1) / ) 2( 1)nVar n S n    

and therefore, 
2 2 2 2(( 1) / ) ( 1) ( )n nE n S n E S      . Moreover, we can also calculate the 

variance of the sample variance by using the theorem (c)  

2 2 4
2 2 2

12 4

( 1) ( 1)
( ) 2( 1) ( ) 2( 1) ( )

1

n
n n n

n S n
Var Var n Var S n Var S

n




 


  
           

. 
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Since, 2
nS  can be taken as an estimator of the population variance and we have the 

distrtibution of 
2
nS , it can be used to make statistical inference  about the population variance. 

The distribution of 2
nS  is the chi-square and therefore, the chi-square distribution can be 

considerd as a sample distribution. When we were discussing the Gamma distribution, we have 

seen that the chi-square distribution is a special case of the Gamma distrtibution. The chi-square 

distribution can also be obtaine from the normal distribution. That is, if ~ (0,1)Z N   then 

2 2
1~Z   and moreover if 1 2, ..., kZ Z Z  are independent standard normal random variables, then 

2 2 2 2
1 2 .. ~k kZ Z Z    .  

C) If 1 2, ,..., nX X X  be a random sample from 2( , )N    we know that  

 
( )

~ (0,1)nn X
N






  and 

2
2

12

( 1)
~n

n

n S






. 

That is, the normal and chi-square distributions are sample distribution. We also know that 

the sample mean and the sample variance are independently distributed random variables.  

t  distribution: Consider two independent random variables X  and Y  such that 

~ (0,1)X N  and 
2~ pY   . Then the probability density function of / /T X Y p  is 

( 1)/2
21/2

1

12
( ) ,

1
( )

12

T p

p

f t t
p

tp

p




 
 
 

 
       

 

 .  

If a random variable T  has the probability density function as given above we say that T  

is distributed as t  with p  degrees of freedom (Student’s t  distribution) and denoted by ~ pT t  

. The graph of the probability density function of the t  distribution is given below.  

 

 

The graph of the probability density function of t  distribution with 2  degrees of 

freedom 
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As we are going to see later, if we want to make any statistical inference about the mean of 

a normal distribution, we use the ( ) /nZ n X      statistic. If the variance is a parameter, 

then it should be estimated. Consider any statistical inference about the normal mean   when 

2  is unknown. Since 
2  is a parameter (unknown) we use its estimator 

2
nS . That is, 

 
( )n

n

n X
T

S


  

to make any statistical inference about mean.  

Notice that if 1 2, ,..., nX X X  is a random sample from a 2( , )N    population, we have  

( )
~ (0,1)nn X

N





 and 

2
2

12

( 1)
~n

n

n S






. 

Moreover the sample mean and the sample variance are independent ( nX  and 
2
nS  are 

independent). Therefore, 

 1
2 2 2 2

( ) ( ) / ( ) /
~

/ [( 1) / ] / ( 1)

n n n
n

n n n

n X n X n X
T t

S S n S n

    

 


  
  

 
. 

That is,  

1( ) / ~n n nT n X S t    

which is another sample distribution which can be used to make any statistical inference about 

the normal mean   when the variance 
2  is unknown.  

 The t  distribution is commonly used in many statistical problems (hypothesis testing, 

confidence intervals and regression analysis) that we are going to discuss some of the 

applications. Since it is very useful distribution the probabilities of the distribution for various 

degrees of freedom have been tabulated and they can be found in any basic statistical textbooks. 

You can even find these probabilities by using your mobile phones (download the application 

“probability distributions”, for example if 10~t t  then ( 2) 0.0367P t    and if 
2
10~X   then 

( 12) 0.285P X    and more many distributions you can find the application).  

 D) Another sample distribution is the F  distribution. Suppose we want to compare two 

population mean. In order to make any statistical inference about two population means, we 

need to assume that the variances are the same. In order to test (check) the equality of the 

variances, we use F  statistic. We use F  statistic to check the model adequacy in regression 

analysis. We will also discuss model fitting and the use of F  distribution later.  
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 Note that if two independently distributed random variables X  and Y  are distributed as chi-

square with p  and q  degrees of freedom (
2~ pX   and 

2~ qY  ) respectively, the probability 

density function of 

 
/

/

X p
F

Y q
   

is  

/ 2 ( 2) / 2

( ) / 2

2
( ) ,

12 2

p p

p q

p q

p x
f x x

p q q p
x

q






 
    

  
                

 

. 

 

 
The probability density function of F  distribution (for 4p   and 6q  ) 

If a random variable F  has such a probability density function, we say that F  is distributed 

as F  with p  and q  degrees of freedeoms and denoted by ~ ( , )F F p q . The graph of the 

probability density function of the F  distribution is given above. 

Let ~ ( , )F F p q the the mean of the F  disatribution can be calculated from tye mean of 

chi-square distributions as shown below. Note that if ~ ( , )F F p q  the the random varaibles X  

and Y  are independently distributed (
2~ pX  , 

2~ qY  ) such that  

/

/

X p
F

Y q
   

and therefore  the mean of the  F  disytribution is  

 
/

/ 2

X p X q q
E F E E E

Y q p Y q

     
       

    
. 

 

Example: Let 
2

1 2, , ~ ( , )n x xX X X N    and 
2

1 2, , ~ ( , )m y yY Y Y N    be two independent 

samples. In order to estimate the ratio  
2 2/x y  , a reasonable estimator will be 2 2

, ,/n X m YS S . ıf 

we want to find the distribution of the ratio of two sample means, the ratio can be rewritten as   
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2
,

2 2 2 2 2
, , ,

2 2 2 2 2
, ,

2

( 1)
/ ( 1)

/ /

/ / ( 1)
/ ( 1)

n X

n X m Y n X x x

x y m Y y m Y

y

n S
n

S S S
F

S m S
m

 

  






  




.  

Since  

2
, 2

12

( 1)
~

n X
n

x

n S






  and  

2
, 2

12

( 1)
~

m Y
m

y

m S






 

and they are independently distributed random variables, according to the definition given 

above it is obvious that the ratio is distributed as F . That is,  

2 2
, ,

2 2

/
~ ( 1, 1)

/

n X m Y

x y

S S
F F n m

 
     or   2 2

, ,/ ~ ( 1, 1)n X m YF S S F n m   . 

 Thus, the F  statistic can be used to make any statistical inference about the ratio 
2 2/x y   (or 

to test whether 
2 2
x y  ). And the F  statistic can be considered another sample distribution. The 

probabilities of the distribution have been tabulated for various degrees of freedoms p  and q . these 

probabilities are available in any textbook.  For example, if ~ (4,5)X F ,  then 

(0 5.2) 0.95P X   . 

 

 The Central Limit Theorem (VERY IMPORTANT) 

Note that if 1 2, , nX X X  is a random sample from 
2( , )N   population, we know that   

( )
~ (0,1)nn X

N





 ,  

2
2

12

( 1)
~n

n

n S






 and 1

( )
~n

n

n

n X
t

S





. 

In general, the distribution of the population is unknown.  

 Note: If a random sample  1 2, , nX X X   we will usually denote this as 1 2( , , )nX X X X 

. Any function of the sample will be called an estimator. That is, 1 2( ) ( , ,..., )n n n nT T X T X X X 

.  

 Let 1 2, , nX X X  be a random sample from a population with probability (or probability 

density) function ( ; )f x  , ( )iE X   and 
2( )iVar X   .  

If ( )n n nT T X X   then  

1 1T X , 1 2
2

2

X X
T


 , 1 2 3

3
3

X X X
T

 
 , …, 1 2 2 ... n

n

X X X X
T

n

   
  
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 Definition: Let 1 2, , nX X X  be a random sample from a population with probability (or 

probability density) function ( ; )f x  , ( )iE X   and 
2( )iVar X  . Let nT  be any estimator 

for the parameter  . We say that nT  converges to the parameter   in probability and denoted 

by 
P

nT    as n   if for any 0    

 lim (| | 0n
n

P T  


    . 

 Chebyshev’s Inequality:   

 Let X  be any random variable such that  ( )E X   and 2( )Var X   then  

  
2

2

( )
(| | )

E X
P X


 




   . 

Example (Weak Law of Large Numbers, WLLN): 

 Let 1 2, , nX X X  be a random sample from a population with probability (or probability 

density) function ( ; )f x  , ( )iE X   and 
2( )iVar X   then the sample mean converges to 

the population mean in probability, that is 
P

nX    as n . Similarly, the sample 

variance converges to the population variance in probability, namely 
2 2P
nS    as n . 

 Before we state the central limit theorem, let us introduce another type of convergence 

known as the convergence in distribution. 

 Definition: Let nX  be any sequence of random variables with distribution function ( )nF x  

and X  be a random variable with cumulative distribution function ( )F x .  We say that nX  

converges to the random variable X  in distribution and denoted by 
D

nX X  as n if 

for every x  such that ( )F x  is continuous at the points x , ( ) ( )nF x F x   as n .   

 

 Theorem (The central Limit Theorem): Let 1 2, , nX X X  be a sequence of independent and 

identically distributed random variables with probability (or probability density) function 

( ; )f x  ,  ( )iE X   and 
2( )iVar X    such that 

2   .  Then 

 
( )

(0,1)
Dnn X

N





  as n . 

Note that since 
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1 1 11 1 1

2

11

1
( )

( )

( )

n n nn n n

i i ii i i
i i ii i i n

nn

ii
ii

X E X n XX E X X n
n Xn

nn
Var XVar X






    



   
     

      
 
 
 

    



 

the central limit theorem can also be stated as 

 1 1

1

(0,1)

n n

i i
Di i

n

i
i

X E X

N

Var X

 



 
  

  
 
 
 

 



 as n . 

The theorem says that whatever the population is, the sample mean approaches to the 

standard normal random variable when the sample size (here n  ) is large enough. Usually, the 

distribution of the population is unknown and in order to make any statistical inference we need 

the normalility assumption. The CLT provides such assumption when the data do not obey the 

normality. Using the central limit theorem (CLT), we can do any statistical inference if the data 

do not come from a normal population. Also we can calculate many probabilities by using the 

CLT. 

 

Example: Consider an experiment of tossing a coin 100  times. Find the probability of 

observing more than 60  tails.  

The probability can be calculated directly by using the binomial distribution. Note that if 

X  is a random variable which counts the number of tails in the experiment it is distributed as 

binomial with 1 / 2p   and 100.n   That is ~ (1 / 2,100)X Binom  and we want to calculate 

( 60)P X  . Note that the probability function of X  is 

100
100 1 1

( ) , 0,1,2,...,100
2 2

x x

P X x x
x


    

      
    

 

and the exact probability is calculated as (by computer) as 

 

100100 100

61 61

100 100

61

100 1 1
( 60) ( )

2 2

1 100!
0.02844.

2 ! (100 )!

x x

x x

x

P X P X x
x

x x



 



    
        

    

 
  

 

 



     

This probability can easily calculated by using the CLT approximately. Let iX  be a random 

variable which counts the number of tails at the .i th  trial (which is either 0  or 1  ). As it is 
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obviously seen that each random variable ~ (1 / 2)iX Bern  and the sum of these random 

variables gives the total number of tails in 100  trial. That is  

100

1
i

i

X X


   ,   
100

1

1
100 50

2
i

i

E X


   
   

  
   and  

100

1

1 1
100 25

2 2
i

i

Var X


    
    

   
  

and therefore by the central limit theorem we calculate the probability as 

 

100 100

100
1 1

100
1

1

60 50
( 60) 60 ( 2) 0.0228

5

i i
i i

i
i

i
i

X E X

P X P X P P Z

Var X

 





  
  

                
  

  

 





. 

As you notice that this probability is very close the exact probability calculated by 

computer. If we had more experiment we get much closer number the the exact probability. 

 

Example: 

 Let 1 2, , nX X X  be a sequence of independent and identically distributed random variables 

with probability (or probability density) function ( ; )f x   and ( )iE X   and 
2( )iVar X   .  

Then we know that  

 
( )

(0,1)
Dnn X

N





  as n   and 

2 2P
nS   as n  

where  

 
1

1 n

n i
i

X X
n 

    and 2 2

1

1
( )

1

n

n i n
i

S X X
n 

 

  . 

Consider the t  statistic to make any inference about the population mean: 

 
( ) ( ) /

(0,1)
/

Dn n
n

n n

n X n X
t N

S S

  



 
    as n . 

That is, for large n  the t  statistic also congerges to normal distribution, (0,1)
D

nt N  as 

n . That is, if we have large number of observations, we can still use the normal 

approximation. However if we do not have large number of observations, we should prefer to 

use t  distribution. In summary, 

a) For larger number of observations, we use Z  distribution 

b) For small number of observation, we use t  distribution. 
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Order Statistics: 

In general, the distribution of the sample is unknown. The order statistics are very helpful 

to get an intuitive information about the sample. Let 1 2, , nX X X  be a random sample from a 

population whit a probability (or probability density) function ( ; )f x   and cumulative 

distribution function ( ; )F x  . Using the values of the order statistics we produce some plots 

(Box-Cox plot, normal probability plot, histogram etc.) to get some distributional properties of 

the sample. First of all, we need to define the ordering the sample. Consider two random 

variables 1X  and 2X   defined on the same sample space. We say that 1X  is smaller than 2X  

if for any w , 1 2( ) ( )X w X w  then we define the order statistics as  

(1) 1 2min{ , , , }nX X X X , 

(2) 1 2secondsmallest{ , , , }nX X X X  

(3) 1 2thirdsmallest{ , , , }nX X X X   

. 

. 

( ) 1 2max{ , , , }n nX X X X . 

 

All these order statistics are function of the sample and therefore these can be considered 

as estimators. Moreover, even the random sample 1 2, , nX X X  is independent and identically 

distributed random variables, the order statistics defined as a function of the same sample are 

not independent and as it is clearly seen we have (1) (2) (3) ( )... nX X X X     such an ordering. 

Based on the order statistics we define some measure of tendencies (median, range, percentiles, 

etc.) as given below. First of all the sample range is given by ( ) (1)nX X  which is also an 

estimator. The sample median M  and the midrange V  are defined based on the order statistics 

as  

(( 1)/2)

( /2) (( /2) 1)

, n is odd

1
[ ] , n is even

2

n

n n

X

M
X X








 




,      (1) ( )( ) / 2nV X X  . 

 

Example: In the following table, the test scores for 50 students and in the second table 

below the ordered values of the tests scores are given.  

66 71 67 69 75 66 64 70 62 83 

70 79 74 74 79 94 76 69 88 72 

84 76 63 70 77 80 77 72 78 73 

75 78 90 76 62 78 78 72 77 72 



13 
 

72 59 73 75 76 80 56 67 69 80 

50 Student’s test scores 

The mean and standard deviation are calculated from the sample as 

 
1

1
73.66

n

n i
i

x x
n 

   2 2

1

1
( ) 55.78

1

n

n i n
i

s x x
n 

  

 . 

The ordered values are given below.   

 

56 59 62 62 63 64 66 66 67 67 

69 69 69 70 70 70 71 72 72 72 

72 72 73 73 74 74 75 75 75 76 

76 76 76 77 77 77 78 78 78 78 

79 79 80 80 80 83 84 88 90 94 

50 Student’s test scores in order 

Using these ordered values, we observe that 

(1) 56x    ,  (50) 94x    ,  (25) 74x    ,  (26) 74x    ,  (48) 88x   

and the median, range and midrange are found to be 

 

(25) (26)0.5[ ] 0.5(74 74) 74m x x     , (1) ( )( ) / 2 (56 94) / 2 75nv x x      

and (50) (1) 94 56 38r x x     . 

When the data is ordered from the smallest to the largest 50% of all observations are smaller 

than the median (here the median is found to be 74). If 25% of all observations are smaller than 

or equal to a number (say LQ ) this number is called the first quartile (here 69LQ  ) and if 75% 

of all observations are smaller than or equal to a number (say  UQ ) this number is called the 

third quartile (here 78UQ  ) and finally, the second quartile is the median. We can also 

calculate some percentiles of the sample. If 60% of all observations are smaller than or equal 

to a number (say 60a ) then the number is called the 60th percentile and similarly if 90% of all 

observations are smaller than or equal to a number (say 90a ) then the number 90a is called the 

90th percentile of the sample. Here, these numbers (known as critical values) are calculated as 

(30) (30)
60

76 76
76

2 2

x x
a

 
    and 

(45) (46)
90

80 83
81.5

2 2

x x
a

 
   . 

Some other values of the percentiles are calculated as follows: 

99 (50) 94a x  , 95 (48) 88a x  , 5 (3) 62a x  , 1 (1) 56a x   

and  

(5) (6)
10

63 64
63.5

2 2

x x
a

 
   . 
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 Using some probabilistic calculations, we can also find the probability distributions of the 

order statistics. The following theorem summarizes the distributional properties of order 

statistics. 

 

Theorem: Let 1 2, , nX X X  be a random sample from a population whit a probability (or 

probability density) function ( ; )f x   and cumulative distribution function ( ; )F x  . Moreover, 

assume that (1) (2) ( ), , , nX X X  are the order statistics as defined above. Then   

a) The probability (or probability density) function of jth order statistics ( )jX  is  

( )

1!
( ) ( )[ ( ) [1 ( )] ,

( 1)!( )!j

j n j
X X

n
f x f x F x F x x D

j n j

   
 

 

b) The joint probability (or probability density) function of ith and jth order statistics ( )iX  

and  ( )jX  is 

( ) ( )

1
,

1

!
( , ) ( ) ( )[ ( )

( 1)!( 1)!( )!

*[ ( ) ( )] [1 ( )]

i j

i
X X

j i n j

n
f x y f x f y F x

i j i n j

F y F x F y



  


   

 

,  x y  

c) And finally, the joint probability (or probability density) function of (1) (2) ( ), , , nX X X  

is   

(1) (2) ( )

1 2
, , , 1 2 1

! ( ) ,
( , , , )

0 , . .
n

n

i n
X X X n i

n f x x x x
f x x x

d y




  

 




 

(Casella and Berger, 2002, page 229-230). 

 Example: Let 1 2, , , nX X X  be a random sample from (0, )U   distribution. The 

probability density function and the cumulative distribution of the uniform distribution is given 

by 

  
1/ , 0

( ; )
0 , . .

x
f x

d y

 


 
 


  ,  

0 , 0

( ; ) / , 0

1 , .

x

F x x x

x

  






  
 

  

a) Let us try to find the probability density function of the nth order statistic ( )nX . By using 

the theorem given above, the probability density function of the nth order statistics is written for 

0 x    by  

( )

1
1! 1

( ; ) 1
( 1)!( )!n

n n n
n

X n

n x x n
f x x

n n n


   

 
   

     
     

 ,   0 x    
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or  

( )

1 , 0
( ; )

0 , . .
n

n

n
X

n
x x

f x

d y


 


 

 



  

If we do not remember the statement of the theorem, we can still find the probability density 

function of the nth order statistic ( )nX  by using the distribution function of ( )nX . Remember 

that the probability density function is the derivative of the cumulative distribution function. 

First of all, let us try to find the distribution function of ( )nX . Let  
( )

( )
nXF x  denote the 

distribution function of ( )nX . Obviously 
( )

( ) 0
nXF x    for 0x   and 

( )
( ) 1

nXF x   for x  . 

Finally, for 0 x    we have          

( ) ( ) 1 1 2

1 2 1

( ) ( ) (max{ , , } ) ( , , , )

( ) ( )... ( ) [ ( )] [ / ] .

nX n n n

n n n n
n

F x P X x P X X x P X x X x X x

P X x P X x P X x P X x x x  

       

       
 

therefore, the cumulative distribution function and the probability density function of the nth 

order statistics ( )nX   are given below. 

0 , 0

( ; ) , 0

1 ,

n n

x

F x x x

x

  








  
 


     and     
( )

1 , 0
( )

0 , . .
n

n

n
X

n
x x

f x

d y





 

 



 

The mean and the variance of the nth order statistic are calculated. First two moments are   

 

( )

0

( )
1

n
n n

n n
E X x dx

n






 
 ,    

2 1 2
( )

0

( )
2

n
n n

n n
E X x dx

n






 
  

and therefore, the variance of ( )nX . 

2
2 2

( ) ( ) ( ) 2
( ) ( ) [ ( )]

( 1) ( 2)
n n n

n
Var X E X E X

n n


  

 
 

 Note that if we set  
1

( )( 1) nT n n X   the mean and the variance of T  are calculated as 

( )
1

( ) n
n

E T E X
n


 

  
 

   and    
2

( )
1

( )
( 2)

n
n

Var T Var X
n n n

 
  

 
. 

 


