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WEEK 9 

 

9. Estimation 

   

 In the previous section, we have studied the basic ideas of sampling and sampling 

distributions. remember that a random sample is a sequence of independent and identically 

distributed random variables with a probability density function ( ; )f x  .  Here,   is the 

parameter which characterize the population. In this section we will try to discuss to estimate 

(to get some information) the parameter  . If  1 2, , nX X X  is a random sample, then we have 

seen that as n   

P
nX  ,  2 2P
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where nX  and  
2
nS  are the sample mean and sample variance respectively. 

 As we mentioned earlier, if X  is a random variable then any function of a random variable 

is also a random variable. That is, since a random variable is a function from the sample space 

to real line, ( )g X  is also a function from the sample space to real line,  
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Definition:  Let 1 2, , nX X X  be any random sample from a population having a 

probability density function ( ; )f x  . Then any function of the sample is called an “estimator” 

or “statistic”. 

Note that a random sample is a sequence of random variables 1 2, , nX X X  denoted by 

1 2( , , )nX X X X   and ( )T X  is any function of the sample and therefore it is an estimator. 

We will use T  instead of ( )T X .  The estimator ( )T X  or just T is a random variable. Since the 

estimator T  is a random variable, it is also a function from the sample space to the real line and 

therefore the value of T  is a real number ( : , ( )T T w   ). This number is called an 

“estimate”.    

Estimator  A random variable 

Estimate    A real number, The value of the estimator. 
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 Let 1 2, , nX X X  be any random sample from a population having a probability density 

function ( ; )f x   such that ( )iE X   and 
2( )iVar X  . Note that  

  
( ) :

( )( )

T X

w T X w




 

and some well-known estimators are given below: 

1
1

1
( )

n

i
i

T X X
n 

   sample mean 

2
2

1

1
( ) ( )

1

n

i n
i

T X X X
n 

 

  sample variance 

3 ( ) 1 2( ) max{ , , }n nT X X X X X   nth order statistic 

4 (1) 1 2( ) min{ , , }nT X X X X X   first order statistic 

5 ( ) (1)( ) nT X X X    sample range 

 

 You can write as many estimators as you can. We can also consider the median as an 

estimator. Based on the experimental data points, we calculate the values of any of these 

estimators. These values will be an estimate for the population parameter. The question is 

“which estimator should we use to estimate the parameter? Therefore, we need to evaluate the 

estimators based on some statistical properties.  

 Example: Consider an experiment of estimating the new-born baby weights. In order to 

estimate the new-born baby’s weight, for a specific day we randomly select a hospital and 

randomly select 20 new-born babies and weights them.  The results are given below: 

 Let iX  be a random variable which measures the ith baby’s weight   e.g. 

1 1( ) 3.75X w x kg  . The rest of the values are given below.  

i  1 2 3 4 5 6 7 8 9 10 

weight 3.75 3.22 3.38 2.94 2.71 4.05 3.62 3.45 3.62 3.54 

i  11 12 13 14 15 16 17 18 19 20 

weight 3.65 3.70 3.85 3.27 3.45 2.90 3.64 3.28 4.12 3.86 

Weights for 20 newborn babies 
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 In order to calculate some statistical tendencies, we ordered the values from the smallest to 

the largest. The ordered values are given below. 

i  1 2 3 4 5 6 7 8 9 10 

weight 2.71 2.90 2.94 3.22 3.27 3.28 3.38 3.45 3.45 3.54 

i  11 12 13 14 15 16 17 18 19 20 

weight 3.62 3.62 3.64 3.65 3.70 3.75 3.85 3.86 4.05 4.12 

The Ordered Values 

 

 Based on these observed values, we calculate some population parameters. First of all, we 

need to mention that no distributional properties yet. If the estimator is the sample mean 

( ) nT X X  which is a random variable and the value of this random variable is 

 1 2 20... 70
( ) 3.5

20 20
n n

x x x
X w x

  
    . 

 That is, the estimated population mean (say  ) is 3.5kg . This means that based on this 

sample, it is expected that the newborn babies have weights 3.5 kg. The estimated variance and 

the standard deviation (which is the positive square root of the variance) are calculated as 

2 2

1

0.13741
1

( ) 053
1

n

n i n
i

s x x
n 

  

  and 2 0.37068926n ns s   . 

data a; input x@@; cards;                                                                                                                

3.75 3.22 3.38 2.94 2.71 4.05 3.62 3.45 3.62 3.54                                                                                        

3.65 3.70 3.85 3.27 3.45 2.90 3.64 3.28 4.12 3.86                       

;                                                                                                                                        

proc univariate normal plot; var x; run;       

                                                                                                                                                                                                                                                                                                                                                                   

*************************************************************************

**********                                                       

                 N                          20    Sum Weights                 20                                                         

                 Mean                      3.5    Sum Observations            70                                                         

                 Std Deviation      0.37068926    Variance            0.13741053                                                         

                 Skewness           -0.4637137    Kurtosis            -0.0697348                                                         
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                 Uncorrected SS       247.6108    Corrected SS            2.6108                                                         

                 Coeff Variation    10.5911217    Std Error Mean      0.08288864   

                                                                                                      

*************************************************************************

*********                                                     

                                   Basic Statistical Measures                                                                                                                          

                         Location                    Variability                                                                                                                     

                     Mean     3.500000     Std Deviation            0.37069                                                              

                     Median   3.580000     Variance                 0.13741                                                              

                     Mode     3.450000     Range                    1.41000                                                              

                                           Interquartile Range      0.45000                                                                                                          

 

*************************************************************************

*********                                                      

                                    Quantiles (Definition 5)                                                                             

                                     Quantile      Estimate                                                                              

                                     100% Max         4.120                                                                              

                                     99%              4.120                                                                              

                                     95%              4.085                                                                              

                                     90%              3.955                                                                              

                                     75% Q3           3.725                                                                                                                                                                                 

                                     50% Median       3.580                                                                              

                                     25% Q1           3.275                                                                              

                                     10%              2.920                                                                              

                                     5%               2.805                                                                              

                                     1%               2.710                                                                              

                                     0% Min           2.710                                                                              
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*************************************************************************

**********                                                      

                                       Extreme Observations                                                                              

                              Value      Obs        Value      Obs                                                                       

                               2.71        5         3.75        1                                                                       

                               2.90       16         3.85       13                                                                       

                               2.94        4         3.86       20                                                                       

                               3.22        2         4.05        6                                                                       

                               3.27       14         4.12       19                                                                       

*************************************************************************

***********                                                     

                        Stem Leaf                     #             Boxplot                                                              

                          40 52                       2                |                                                                 

                          38 56                       2                |                                                                 

                          36 224505                   6             +-----+                                                              

                          34 554                      3             *--+--*                                                              

                          32 2788                     4             +-----+                                                              

                          30                                           |                                                                 

                          28 04                       2                |                                                                 

                          26 1                        1                |   

                                         Normal Probability Plot                                                                         

                       4.1+                                       *++++*                                                                 

                          |                                  *+*++                                                                       

                          |                          ****+**+                                                                            

                          |                      ***+++                                                                                  

                          |                *+**+*+                                                                                       

                          |            +++++                                                                                             
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                          |       ++++*  *                                                                                               

                       2.7+ +++++*                                                                                                       

                           +----+----+----+----+----+----+----+----+----+----+                                                           

                               -2        -1         0        +1        +2                                                                         

    

 Some other values of the estimators have been calculated (in SAS) and given in the above 

table. Now let us try to explain these values.  

 In the table, the first part is the SAS codes to analyze the data. After we enter the data and 

run the SAS codes, the output is given right below the codes. There are some other outputs but 

we deleted the rest.  

 The second part of the table are the basic calculations about the data (mean, variance, 

standard deviation, skewness, kurtosis, coefficient of variation) which we explained the first 

section in the notes. The third part of the table contains information about the mean, median, 

mode, range and interquartile range. As we know, the median of the sample is a number m such 

that 50% of all observations are less than or equal to m . Notice that there are 20 observations 

in the sample and when we ordered the data from smallest to the largest (which are given in the 

second table above), the median is 

 (10) (11)[ ] / 2 (3.54 3.62] / 2 (7.16) / 2 3.58m x x      .  

The mode is the most repeated observation. If we check the data, the observations 3.45 and 3.62 

have been observed twice and therefore anyone of these measurements can be considered as 

the mode of the sample. From the output (in the third part), the mode is given by 3.45. Standard 

deviation and the variance have been given in the second part (same as in the second part of the 

output).  In that part of the table, the range and interquartile range have also been given. The 

range of the sample is the difference from the largest to the smallest. That is, ( ) 4.12nx   , 

(1) 2.71x   so the difference (range) is ( ) (1) 4.12 2.71 1.41nRange x x     . The quartiles are 

given in the fourth part of the table, for the first quartile consider the first 10 smallest 

observations and find the median. The median of the first part 

(5) (6)( ) / 2 (3.27 3.28) / 2 6.55 / 2 3.275x x     . That is, 25% of all observations are less 

than or equal to 3.275. That is, 1 3.275Q  . Similarly, in order to find the third quartile, consider 

the second part of the ordered data (largest 10 observations) and find the median of the second 

part. That is, the third quartile is  
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 3 (15) (16)( ) / 2 (3.70 3.75) / 2 7.45 / 2 3.725Q x x      . 

This means that 75% of all observations are less than or equal to 3.725. Therefore the 

interquartile range is the difference from the third quantile to the firs quartile. That is, 

   3 1 3.725 3.275 0.45IQR Q Q     .  

 Some of the percentiles (quantiles) are given in the fourth part of the table. Remember that 

the pth percentile of the sample is a number pa  that p% of all observations are less than or 

equal to the number pa . For example, let us find the 90th percentile of the sample.  The 90th 

percentile 90a  is found to be 90 (18) (19)( ) / 2 (3.86 4.05) 7.91 / 2 3.955a x x      . Similarly, 

we calculate 95th, 10th and 5th percentiles below: 

 95 (19) (20)( ) / 2 (4.05 4.12) 8.17 / 2 4.085a x x        

 10 (2) (3)( ) / 2 (2.90 2.94) 5.84 / 2 2.92a x x       

 5 (1) (2)( ) / 2 (2.71 2.90) 5.61 / 2 2.805a x x      . 

 The fifth part of the table gives some extreme values (5 smallest and 5 largest observations). 

The last part of the table includes some plots about the data. One of these plots is the stem-and-

leaf plot which is very similat to the histogram. Another is the Box-plot which gives some 

information about the normality and skewness or the symmetry about the sample. If the Box-

plot is equally divided then we can say that the data is symmetric around the mean. Notice that 

3.5nx   and 3.58m   so that mean and the median are close to each other. That is the data is 

nearly symmetric around the mean. Finally, at the end of the table, there is a normal probability 

plot which gives some information about the normality. If the plots seem to be linear then we 

can say that the data come from a normal population. There are some hypotheses testing results 

(non-parametric test) that we can test whether the data come from a normal population or not 

(like the values of Kolmororov-Simirnov and Cramer-von Mises test statistics). Since we did 

not study the hypothesis testing problem yet, we deleted these output results from the table. In 

this part of the table, it is important to mention that if we observe linearity in the normal 

probability plot, we can say that the data come from a normal population.  

 

 Some Properties of Estimators:  

 The goal of statistic (or any other field of science) is to understand the real world. 

Understanding means that we want to get some information about the population unknowns 

(we called parameter or parameters).  In order to that we perform experiments and collect the 

data and based on the observed values we give estimates. Of course, there is no restriction to 
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give an estimate about the parameters. However a good estimate should satisfies some statistical 

properties. We want estimators with smaller variance. For example, if we use two estimators in 

order to estimate a parameter, we should use the one that has a smaller variance. If 1T  and 2T  

are two estimators in order to estimate a parameter    and if  1 2( ) ( )Var T Var T  we should use 

1T  to estimate the parameter. Of course, we can propose as many estimators as to estimate a 

parameter. However, a “better” estimator should satisfy some statistical properties 

(unbiasedness, consistency, sufficiency, efficiency etc.) and if possible, we want to find the 

“best” estimator. Here, the meaning of “the best” changes according to the criteria.   

 

 Unbiasedness: 

 First of all, we should mention that for a parameter  , there might be more than one unbiased 

estimator.  

 Definition: An estimator T  is said to be unbiased for a parameter   if  

   ( )E T    for all  .  

 Example: Let 1 2, , nX X X  be any random sample from a population having a probability 

density function ( ; )f x   such that ( )iE X   and 
2( )iVar X  .  The sample mean and 

variance are unbiased estimators for the population mean and variance. The estimators are 

already defined as 

 
1

1 n

n i
i

X X
n 

   2 2

1

1
( )

1

n

n i n
i

S X X
n 

 

 . 

Note that  

 
1 1

1 1 ...
( ) ( )

n n

n i i
i i

n
E X E X E X

n n n n

   


 

   
     

 
   

which implies that the sample mean ( nX  ) is an unbiased estimator for the population mean (

 ). Since,  

   

2 2 2 2 2

1 1 1

2 2 2 2 2 2

1 1

2
2 2 2 2 2 2 2 2 2

1 1 1
( ) ( ) ( )

1 1 1

1 1
( ) ( ) ( ) ( / )

1 1

1 1 ( 1)
(( )

1 1 1

n n n

n i n i n i n
i i i

n n

i n
i i

E S E X X E X X E X n X
n n n

E X n E X n n
n n

n
n n n n n

n n n

   


        

  

 

     
          

       

   
        

    


         

  

  

   

the sample variance (
2
nS ) is unbiased for the population variance (

2 ). Note that the estimator  

 2

1

1
( )

n

n i n
i

T X X
n 

    
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is a biased estimator for 
2  because 

 2 2 2 2 2

1 1

1 1 1 1 1
( ) ( ) ( )

1

n n

n i n i n n
i i

n n n
E T E X X E X X E S

n n n n n
 

 

     
         

   
  . 

That is, the estimator nT  is biased for the population variance 
2 . 

 Definition (The Bias): Let T  be any estimator for a parameter   . The difference ( )E T   

is called the bias of T   and denoted by ( )Bias T  . That is, ( ) ( )Bias T E T   . 

 Note that if  ( ) 0Bias T   then the estimator T  is unbiased for   . 

In the above example, we showed that the estimator  

 2

1

1
( )

n

n i n
i

T X X
n 

   

is biased for the population variance. The bias of the estimator is calculated as 

 2

2
2 2 21

( ) ( )n n

n
Bias T E T

n n


  


      . 

 The Mean Squared Error: Sometimes it is difficult to find the best estimator for a 

parameter  . We may consider a better estimator should be unbiased and have a smaller 

variance. If it is possible, among all unbiased estimators it there is one which has the smallest 

variance this is the best estimator. Such an estimator may not exist. In some cases, we may use 

a biased estimator which have a smaller variance. If an estimator has a smaller mean square 

error, this controls both the bias and the variance.  

 Definition: Consider an estimator T  for a parameter  . The mean squared error of T  is 

defined as 

  
2( ) ( )MSE T E T     

which is also known as the lost function.  

 Note that 

 

2 2

2 2

0

2 2 2

( ) ( ) ( ( ) ( ) )

( ( )) ( ( ) ) 2( ( ) ) [ ( ) ( )]

( ( )) ( ( ) ) ( ) ( ).

MSE T E T E T E T E T

E T E T E T E T E T E T

E T E T E T Var T Bias T

  



  

 

 





     

      

     

 

 That is, the mean squared error can also be written as 

   
2 2( ) ( ) ( ) ( ).MSE T E T Var T Bias T        

 If an estimator T  is unbiased ( ( ) 0Bias T  ), then the mean squared error is the variance of 

the estimator ( ( ) ( )MSE T Var T  ). 
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 Example: Let 1 2, , nX X X  be a random sample from a 2( , )N    population. We have 

shown that the sample mean nX  is unbiased for the population mean ( ( )nE X  ) and 

therefore the bias is zero. The variance of the sample mean 
2 / n  and therefore, 

2( ) ( ) /n nMSE X Var X n    . Now, consider the problem of estimating the population 

variance. Consider the following estimators 

2
1

1

1
( )

1

n

i n
i

T X X
n 

 

  2

2
1

1
( )

n

i n
i

T X X
n 

    2
3

1

1
( )

1

n

i n
i

T X X
n 

 

 . 

 Here, the estimators 1T  is the sample variance, 2T  is the maximum likelihood (or method of 

moment) estimator and 3T  is the mean squared error estimator of 
2 .  Note that the estimator 

1T  is the sample variance it is unbiased for (
2

1( )E T  ). Moreover, as we have discussed earlier 

4
1( ) 2 / ( 1)Var T n   and therefore, 

 
4

1 1( ) ( ) 2 / ( 1)MSE T Var T n   . 

Now let us calculate the variance and the mean squared error of the estimator 2T . Notice that  

 2 2 2
2

1 1

1 1 1 1
( ) ( )

1

n n

i n i n n
i i

n n
T X X X X S

n n n n 

 
    


   

and therefore, 

  2 2
2

1 1
( ) ( )n

n n
E T E S

n n


 
   , 2

2

2( )Bias T
n


   and the variance of 2T  is 

  
2 2 4 4

2 2
2 2 2

1 1 ( 1) 2 2( 1)
( )

1
n n

n n n n
Var T Var S Var S

n n nn n

       
      

   
. 

Therefore, the mean squared error of 2T  is  

 2

4 4 4
2

2 2 2 2 2 2

2( 1) (2 1)
( ) ( ) ( ) .

n n
MSE T Var T Bias T

n n n

   
      

Similarly, we can calculate the variance and the mean squared error of the estimator 3T . Notice 

that  

 2 2 2
3

1 1

1 1 1 1
( ) ( )

1 1 1 1

n n

i n i n n
i i

n n
T X X X X S

n n n n 

 
    

   
   

and therefore, 

  2 2
3

1 1
( ) ( )

1 1
n

n n
E T E S

n n


 
 

 
 , 2

2

3

2
( )

1
Bias T

n


 


 and the variance of 3T  is 
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  
2 2 4 4

2 2
3 2 2

1 1 ( 1) 2 2( 1)
( )

1 1 1( 1) ( 1)
n n

n n n n
Var T Var S Var S

n n nn n

       
      

      
. 

Therefore, the mean squared error of 3T  is  

 2

4 4 4
2

3 3 3 2 2

2( 1) 4 2
( ) ( ) ( ) .

( 1)( 1) ( 1)

n
MSE T Var T Bias T

nn n

  
    

 
 

 The bias, variance and mean squared err of the estimators are summarized below. Compare 

the variances and the mean squared errors of these three estimators.  

Estimator Mean Bias Variance MSE 

1T  2  0  
42

1n




 

42

1n




 

2T  21n

n



 

2

n


  

4

2

2( 1)n

n


 

4

2

(2 1)n

n


 

3T  21

1

n

n





 

22

1n





 

4

2

2( 1)

( 1)

n

n




 

42

( 1)n




 

  

  

 Consistency:  

 As we have already mention an estimator is a function of the sample. Since the sample 

depends on the sample size, the estimator is also a function of the sample size. We define the 

estimators in order to get some information about the population unknowns 

 

 

 

 

Let 1 2, , nX X X  be a random sample with 

probability (or probability density) function ( ; )f x 

Let nT  be any sequence of estimators. remember that 

nT  converges to   in probability if for every 0    

               lim (| | ) 0n
n

P T  


   .  

  

 Definition: Let 1 2, , nX X X  be a random sample with probability (or probability density) 

function ( ; )f x  Let nT  be any sequence of estimators. If the sequence of estimators nT  

converge to the parameter    in probability (
P

nT    as n  ), then nT  is consistent for 

 .  
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 Let 1 2, , nX X X  be a random sample with probability (or probability density ) function 

( ; )f x   such that ( )iE X   and 
2( )iVar X   for all i . Assume that nT  be any sequence of 

estimators. From the Chebyshev’s inequality we have 

  
2 2

2 2

( ) ( ) ( )
(| | ) n n n

n

E T Var T Bias T
P T 

 
 

 
     . 

 Thus if ( ) 0nVar T   and ( )nBias T   as n it is obvious that (| | ) 0nP T      

and therefore, the sequence estimators nT  is consistent for the parameter  . 

 Example: Let 1 2, , nX X X  be a random sample with probability (or probability density) 

function ( ; )f x   such that ( )iE X   and 
2( )iVar X   . We have shown that  ( )nE X    

and 
2( ) /nVar X n . It is obvious that nX  is unbiased for    and therefore ( ) 0nBias T   

and since 
2( ) / 0nVar X n   as n  which implies that 

P
nX   as n . That is, 

the sequence of estimators nX  is consistent for the population mean  . Moreover, as we have 

shown before, 2 2P
nS   as n  which implies that the sequence of estimators (

2
nS , the 

sample variance) is consistent for the population variance 
2 .    

 

 Efficiency:  

 For any parameter    we may have many different unbiased estimators as well as any 

consistent estimators. Among those estimators, we may want to have more efficient estimators. 

If it is possible, we want the most efficient estimator. Actually, among the class of unbiased 

estimators, it there is one that the smallest variance this is the most efficient estimators. Such 

an estimator may not exist. In some cases, we may find such estimators but we are not going to 

discuss these types of estimators.  

 

 Definition:  Let 1 2, , nX X X  be a random sample with probability (or probability density) 

function ( ; )f x   and consider two estimators 1T  and 2T  to estimate the parameter  . If 

   1 2( ) ( )Var T Var T  for all    

then the estimator 1T  is said to be more efficient that 2T . 

 Example: Let 1 2, , nX X X  be a random sample from ( )Poisson   population.  We know 

that the mean and variance for the Poisson distribution are the same. That is, ( )E X   and 
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( )Var X   since the sample mean and sample variance are unbiased for the population mean 

and variance (population mean ( )E X     and 2( )Var X    ) we have  

 ( )nE X    and 
2( )nE S  . 

 Moreover, for any fixed reel number a  a class of estimators 
2(1 )a n nT aX a S    are all 

unbiased for the population parameter  .  That is for a parameter we can find infinitely many 

unbiased estimators for the population parameter. The sample mean is unbiased for   with the 

variance / n  . That is, ( ) /nVar X n . It can also be shown that 
2( ) ( )n nVar X Var S  (the 

calculation of 
2( )nVar S  is really difficult and the inequality can be shown from the Cramer-

Rao’s inequality that we are not going to cover here). That is, the sample mean is more efficient 

that the sample variance for the Poisson parameter  . Again, from Cramer-Rao’s inequality, it 

can be shown that the sample mean is the most efficient estimator among all these unbiased 

estimators (This is known as the Uniformly Minimum variance Unbiased Estimator, the 

UMVUE).  

 

 Sufficiency:  

 Sufficiency property of the estimators are very important especially for statistical inference. 

In estimation, we usually look for the most efficient unbiased estimators. If we can find a 

sufficient estimator for a parameter, based on this sufficient estimator we can write and 

unbiased estimator for the parameter that we are interested in.  

 Definition: Let  1 2, , nX X X  be a random sample from a population with probability (or 

probability density) function ( ; )f x   and T  be any estimator for the parameter  . If the 

conditional probability density function of 1 2, , nX X X  given T t  then we say that the 

estimator T  is sufficient for  .  

 

 A sufficient estimator is the one that summarized all the information in the sample about the 

parameter. If and estimator T  is sufficient for a parameter  , then any statistical inference can 

be made based on the value of the sufficient estimator T . 

  Let  1 2, , nX X X  be a random sample from a population with a probability function 

( , )f x    and T  be any estimator for  . As we know, the estimator is a function of the sample 

and it is a random variable. For discrete case, if the conditional probability 

 1 1 2 2( , , , | )n nP X x X x X x T t     
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does not depend on the parameter   the T  is sufficient for  . Similar argument can be carried 

out for continuous case. For simplicity let us denote 1 2( , , , )nX X X X   and the estimator as 

( )T X . As it is understood from the definition a sufficient estimator is not unique.  

 Let T  be a sufficient estimator for    then the conditional probability ( | ( ) )P X x T X t   

does not depend on the parameter  . On the other hand, since { } { ( ) ( )}X x T X T x    the 

conditional probability   |P X x T t   can be calculated as 

 
( , ) ( ) ( ; )

|
( ) ( ) ( ( ); )

P X x T t P X x p x
P X x T t

P T t P T t q T x

 

 





  
    

 
 

and therefore if the ratio ( ; ) / ( ( ); )p x q T x   does not depend on the parameter the estimator 

T  is sufficient for  . Therefore we can state the following theorem without the proof.  

Theorem:  An estimator T  is sufficient for   if and only if the ration  ( ; ) / ( ( ); )p x q T x   

does not depen on the parameter. 

 Example 1. Let 1 2, , , nX X X  be a random sample from a Bernoulli distribution with the 

parameter p . let us try to check whether the estimator 1 2 nT X X X     is sufficient or 

not. Note that  ~ ( , )T Binom n p  with the probability function,  

( ) (1 ) , 0,1,2,...,t n t
p

n
P T t p p t n

t

 
    

 
. 

Therefore if the ratio ( ; ) / ( ( ); )p x p q T x p  for 1 2 ... nt x x x      does not depen on the 

parameter p  then T  will be sufficient. Note that the ratio for 1 2 ... nt x x x     can be written 

as 

 

 

 

   

1 1

1

1 1

( ) (1 )
; (1 ) 1

( );
(1 ) (1 )

n n

i i i i
i i

n n
x x x n x

p i i
p i i

t n t t n tp p

P X x p p
P X xp x p p p

n n nq T x p P T t P T t
p p p p

t t t

 

 

 

 

  
 

    
       

      
     

 
 

and which is independent from    and therefore the estimator 1 2 nT X X X     is 

sufficient for p . 

 The following theorem is very important to find a sufficient estimatıor for a parameter. We 

state the theorem without the proof. The proof of the theorem can be found in any textbook 

retaled to estimation theory (e.g Casella and Berger, 2002). 

Theorem (Factorization Theorem, very important) Let 1 2, , , nX X X  be a random sample 

from a population with probability or probability density function ( ; )f x  . The estimator T  is 
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sufficient for    if and only if there are functions ( ; )g t   and ( )h x  such that the joint probability 

or probability density function of 1 2, , , nX X X  can be written as  

( ; ) ( ( ); ) ( )f x g T x h x  . 

 Here g  is a function of ( )T x  and   and h  is only a function of x  which does not depend 

on the parameter.  

 Example: a) Let 1 2, , , nX X X  be a random sample from a Bernoulli distribution with the 

parameter p . In the previous example we showed that  1 2 nT X X X     is sufficient for 

p . By using the factorization theorem the joint probability distribution  of X ’s can be written 

as  

  1 11 ( ) ( )

1

( ; ) (1 ) (1 ) (1 )

n n

i i
i i i i

x n xn
x x T x n T x

p
i

f x p P X x p p p p p p 


 



 
         

and therefore for the functions  
( ) ( )( ( ); ) (1 )T x n T xg T x p p p    and ( ) 1h x   the joint probability 

function can be written as ( ; ) ( ( ); ) ( )f x p g T x p h x  and thus by the fuctorization theorem T  is 

sufficient for p .  

b) let 1 2, , , nX X X  be a random sample from 
2( , )N    distribution. The joint probability 

density function of 1 2, , , nX X X  can be written as for    2

1 1

,
n n

i i
i i

T x x x

 

 
  
 
 
  , 

 
/2 2

2 2

2 2 2 2
1 1

/2 2

2 2 2 2
1 1

/2/2 2

2 2 2 2

1 1
; , exp

2 2 2

1 1
exp exp

2 2 2

1 1 1
         exp exp ,

2 2 2

n n n

i i
i i

n n n

i i
i i

nn

n
f x x x

n
x x

n

 
 

   

 

   

 

    

 

 

  
          

    
             

     
               

 

 

1

1

n

i
i

n

i
i

x

x





  
  
  
  
  

 
   





 

 
/2/2 2

2

2 2

1 1
exp exp , ( ) .

2 2

nn
n

w T x


 
  

                    

 

Therefore for the functions 

 
/ 2

( ) 1/ 2
n

h x   and  
/ 2 2

2 2

2 2

1
( ( ); , ) exp exp , ( )

2

n
n

g T x w T x


   
 

               

 

the joint probability density function can be written as  
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2 2( ; , ) ( ( ); , ) ( )f x g T x h x     

and thus by the factorization theorem the bivariate estimator   2

1 1

,
n n

i i
i i

T X X X

 

 
  
 
 
   is 

sufficient for 
2( , )  . 

 

c) Let 1 2, , , nX X X  be a random sample from a uniform distribution with the parameter 

 . The probability density function of the uniform distribution is given by  

1/ , 0
( ; )

0 , . .

x
f x

d y

 


 
 


 

This probability density function can also be written with the following indicator function  

 
1 ,

( )
0 ,

A

x A
I x

x A


 


 

as  
1

(0 )( ; ) ( )xf x I x     . Therefore the joint probability density function of the sample can 

be written for ( ) 1 2max{ , ,..., }n nx x x x  as  

(1) (2) ( ) ( ){0 } 1 {0 } 2 {0 } {0 }
1

1 1 1 1
( ; ) ( ; ) ( ) ( )... ( ) ( ).

n n

n

i x x x n xn
i

f x f x I x I x I x I x    
   

       


    

 By defining the functions 
( ){0 }( ( ); ) ( )
n

n
xg T x I x      and ( ) 1h x   allows us to write the 

joint probability density function as ( ; ) ( ( ); ) ( )f x g T x h x   and thus by the factorization 

theorem ( )( ) nT X X  is sufficient for  . 

 d) Let 1 2, , , nX X X  be a random sample from a population with the following probability 

density function: 

1 , 0 1
( ; )

0 , . .

x x
f x

d y




  
 


 

Note that the joint probability density function of 1 2, , , nX X X  can be written as 

  1

1 1 1 1

1
( ; ) ( ; ) ( ); ( )

n n n n
n n

i i i
ii i i i

f x f x x x g T x h x
x


    

   

 
    

 
     

and thefore by the factorization theorem the estimator 
1

( )
n

i
i

T X X


  is sufficient for  . Here 

the functions g  and h  are defined as  

 
1

( );
n

n
i

i

g T x x



 


 
  

 
   and 

1

1
( )

n

ii

h x
x

 . 

The application of the factorization theorem does not requires the independence. That is, 

the theorem is valid for non-independent and identically distributed sample.  
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As it is noted before, the sufficient estimator is not unique. Any one-to-one function of a 

sufficient estimator is also sufficient. To show that, let T  be any sufficient estimator for a 

parameter   and r  be any one-to-one function. then  
* ( )T r T  is also sufficient for the same 

parameter  . Since T  is sufficient for   by the factorization theorem the joint probability 

density function can be written as ( ; ( ( ); ) ( )f x g T x h x   for specified function ( ; )g t   and 

( )h x . Moreover, since r  is a one-to-one 
1 *( )T r T  and therefore the joint probability density 

function of the sample can also be written as  

1 *

1 * * *

( ; ) ( ( ); ) ( ( ( ( )); ) ( )

( )( ( ); ) ( ) ( ( ); ) ( )

f x g T x h x g r T x h x

g r T x h x g T x h x

  

 





 

 
 

and thus by the factorization theorem  * ( )T r T  is also sufficient for  . According to this 

result, since 
1

n

i
i

T X


  is sufficient for p  in the example (a), nX  is also sufficient for the same 

parameter. In the example (b) we showed that    2

1 1

,
n n

i i
i i

T X X X
 

 
  
 
   is sufficient for  2( , )   

and for the same reason the estimator  * 2( ) ( , )n nT X X S  is also sufficent for the same parameter 

2( , )  . In the example (d) since 
1

n

i
i

T X


  is sufficient for  , the estimator *

1

ln( )
n

i
i

T X


   

is also sufficient for the same parameter  . 
 


