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 Efficiency:  

 For any parameter    we may have many different unbiased estimators as well as any 

consistent estimators. Among those estimators, we may want to have more efficient estimators. 

If it is possible, we want the most efficient estimator. Actually, among the class of unbiased 

estimators, it there is one that the smallest variance this is the most efficient estimators. Such 

an estimator may not exist. In some cases, we may find such estimators but we are not going to 

discuss these types of estimators.  

 

 Definition:  Let 1 2, , nX X X  be a random sample with probability (or probability density) 

function ( ; )f x   and consider two estimators 1T  and 2T  to estimate the parameter  . If 

   1 2( ) ( )Var T Var T  for all    

then the estimator 1T  is said to be more efficient that 2T . 

 Example: Let 1 2, , nX X X  be a random sample from ( )Poisson   population.  We know 

that the mean and variance for the Poisson distribution are the same. That is, ( )E X   and 

( )Var X   since the sample mean and sample variance are unbiased for the population mean 

and variance (population mean ( )E X     and 2( )Var X    ) we have  

 ( )nE X    and 
2( )nE S  . 

 Moreover, for any fixed reel number a  a class of estimators 
2(1 )a n nT aX a S    are all 

unbiased for the population parameter  .  That is for a parameter we can find infinitely many 

unbiased estimators for the population parameter. The sample mean is unbiased for   with the 

variance / n  . That is, ( ) /nVar X n . It can also be shown that 
2( ) ( )n nVar X Var S  (the 

calculation of 
2( )nVar S  is really difficult and the inequality can be shown from the Cramer-

Rao’s inequality that we are not going to cover here). That is, the sample mean is more efficient 

that the sample variance for the Poisson parameter  . Again, from Cramer-Rao’s inequality, it 

can be shown that the sample mean is the most efficient estimator among all these unbiased 

estimators (This is known as the Uniformly Minimum variance Unbiased Estimator, the 

UMVUE).  
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 Sufficiency:  

 Sufficiency property of the estimators are very important especially for statistical inference. 

In estimation, we usually look for the most efficient unbiased estimators. If we can find a 

sufficient estimator for a parameter, based on this sufficient estimator we can write and 

unbiased estimator for the parameter that we are interested in.  

 Definition: Let  1 2, , nX X X  be a random sample from a population with probability (or 

probability density) function ( ; )f x   and T  be any estimator for the parameter  . If the 

conditional probability density function of 1 2, , nX X X  given T t  then we say that the 

estimator T  is sufficient for  .  

 

 A sufficient estimator is the one that summarized all the information in the sample about the 

parameter. If and estimator T  is sufficient for a parameter  , then any statistical inference can 

be made based on the value of the sufficient estimator T . 

  Let  1 2, , nX X X  be a random sample from a population with a probability function 

( , )f x    and T  be any estimator for  . As we know, the estimator is a function of the sample 

and it is a random variable. For discrete case, if the conditional probability 

 1 1 2 2( , , , | )n nP X x X x X x T t     

does not depend on the parameter   the T  is sufficient for  . Similar argument can be carried 

out for continuous case. For simplicity let us denote 1 2( , , , )nX X X X   and the estimator as 

( )T X . As it is understood from the definition a sufficient estimator is not unique.  

 Let T  be a sufficient estimator for    then the conditional probability ( | ( ) )P X x T X t   

does not depend on the parameter  . On the other hand, since { } { ( ) ( )}X x T X T x    the 

conditional probability   |P X x T t   can be calculated as 

 
( , ) ( ) ( ; )

|
( ) ( ) ( ( ); )

P X x T t P X x p x
P X x T t

P T t P T t q T x

 

 





  
    

 
 

and therefore if the ratio ( ; ) / ( ( ); )p x q T x   does not depend on the parameter the estimator 

T  is sufficient for  . Therefore we can state the following theorem without the proof.  

Theorem:  An estimator T  is sufficient for   if and only if the ration  ( ; ) / ( ( ); )p x q T x   

does not depen on the parameter. 
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 Example 1. Let 1 2, , , nX X X  be a random sample from a Bernoulli distribution with the 

parameter p . let us try to check whether the estimator 1 2 nT X X X     is sufficient or 

not. Note that  ~ ( , )T Binom n p  with the probability function,  

( ) (1 ) , 0,1,2,...,t n t
p

n
P T t p p t n

t

 
    

 
. 

Therefore if the ratio ( ; ) / ( ( ); )p x p q T x p  for 1 2 ... nt x x x      does not depen on the 

parameter p  then T  will be sufficient. Note that the ratio for 1 2 ... nt x x x     can be written 

as 

 

 

 

   

1 1

1

1 1

( ) (1 )
; (1 ) 1

( );
(1 ) (1 )

n n

i i i i
i i

n n
x x x n x

p i i
p i i

t n t t n tp p

P X x p p
P X xp x p p p

n n nq T x p P T t P T t
p p p p

t t t

 

 

 

 

  
 

    
       

      
     

 
 

and which is independent from    and therefore the estimator 1 2 nT X X X     is 

sufficient for p . 

 The following theorem is very important to find a sufficient estimatıor for a parameter. We 

state the theorem without the proof. The proof of the theorem can be found in any textbook 

retaled to estimation theory (e.g Casella and Berger, 2002). 

Theorem (Factorization Theorem, very important) Let 1 2, , , nX X X  be a random sample 

from a population with probability or probability density function ( ; )f x  . The estimator T  is 

sufficient for    if and only if there are functions ( ; )g t   and ( )h x  such that the joint probability 

or probability density function of 1 2, , , nX X X  can be written as  

( ; ) ( ( ); ) ( )f x g T x h x  . 

 Here g  is a function of ( )T x  and   and h  is only a function of x  which does not depend 

on the parameter.  

 Example: a) Let 1 2, , , nX X X  be a random sample from a Bernoulli distribution with the 

parameter p . In the previous example we showed that  1 2 nT X X X     is sufficient for 

p . By using the factorization theorem the joint probability distribution  of X ’s can be written 

as  

  1 11 ( ) ( )

1

( ; ) (1 ) (1 ) (1 )

n n

i i
i i i i

x n xn
x x T x n T x

p
i

f x p P X x p p p p p p 


 



 
         
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and therefore for the functions  
( ) ( )( ( ); ) (1 )T x n T xg T x p p p    and ( ) 1h x   the joint probability 

function can be written as ( ; ) ( ( ); ) ( )f x p g T x p h x  and thus by the fuctorization theorem T  is 

sufficient for p .  

b) let 1 2, , , nX X X  be a random sample from 
2( , )N    distribution. The joint probability 

density function of 1 2, , , nX X X  can be written as for    2

1 1

,
n n

i i
i i

T x x x

 

 
  
 
 
  , 

 
/2 2

2 2

2 2 2 2
1 1

/2 2

2 2 2 2
1 1

/2/2 2

2 2 2 2

1 1
; , exp

2 2 2

1 1
exp exp

2 2 2

1 1 1
         exp exp ,

2 2 2

n n n

i i
i i

n n n

i i
i i

nn

n
f x x x

n
x x

n

 
 

   

 

   

 

    

 

 

  
          

    
             

     
               

 

 

1

1

n

i
i

n

i
i

x

x





  
  
  
  
  

 
   





 

 
/2/2 2

2

2 2

1 1
exp exp , ( ) .

2 2

nn
n

w T x


 
  

                    

 

Therefore for the functions 

 
/ 2

( ) 1/ 2
n

h x   and  
/ 2 2

2 2

2 2

1
( ( ); , ) exp exp , ( )

2

n
n

g T x w T x


   
 

               

 

the joint probability density function can be written as  

 
2 2( ; , ) ( ( ); , ) ( )f x g T x h x     

and thus by the factorization theorem the bivariate estimator   2

1 1

,
n n

i i
i i

T X X X

 

 
  
 
 
   is 

sufficient for 
2( , )  . 

 

c) Let 1 2, , , nX X X  be a random sample from a uniform distribution with the parameter 

 . The probability density function of the uniform distribution is given by  

1/ , 0
( ; )

0 , . .

x
f x

d y

 


 
 


 

This probability density function can also be written with the following indicator function  

 
1 ,

( )
0 ,

A

x A
I x

x A


 


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as  1
(0 )( ; ) ( )xf x I x     . Therefore the joint probability density function of the sample can 

be written for ( ) 1 2max{ , ,..., }n nx x x x  as  

(1) (2) ( ) ( ){0 } 1 {0 } 2 {0 } {0 }
1

1 1 1 1
( ; ) ( ; ) ( ) ( )... ( ) ( ).

n n

n

i x x x n xn
i

f x f x I x I x I x I x    
   

       


    

 By defining the functions 
( ){0 }( ( ); ) ( )
n

n
xg T x I x      and ( ) 1h x   allows us to write the 

joint probability density function as ( ; ) ( ( ); ) ( )f x g T x h x   and thus by the factorization 

theorem ( )( ) nT X X  is sufficient for  . 

 d) Let 1 2, , , nX X X  be a random sample from a population with the following probability 

density function: 

1 , 0 1
( ; )

0 , . .

x x
f x

d y




  
 


 

Note that the joint probability density function of 1 2, , , nX X X  can be written as 

  1

1 1 1 1

1
( ; ) ( ; ) ( ); ( )

n n n n
n n

i i i
ii i i i

f x f x x x g T x h x
x


    

   

 
    

 
     

and thefore by the factorization theorem the estimator 
1

( )
n

i
i

T X X


  is sufficient for  . Here 

the functions g  and h  are defined as  

 
1

( );
n

n
i

i

g T x x



 


 
  

 
   and 

1

1
( )

n

ii

h x
x

 . 

The application of the factorization theorem does not requires the independence. That is, 

the theorem is valid for non-independent and identically distributed sample.  

As it is noted before, the sufficient estimator is not unique. Any one-to-one function of a 

sufficient estimator is also sufficient. To show that, let T  be any sufficient estimator for a 

parameter   and r  be any one-to-one function. then  
* ( )T r T  is also sufficient for the same 

parameter  . Since T  is sufficient for   by the factorization theorem the joint probability 

density function can be written as ( ; ( ( ); ) ( )f x g T x h x   for specified function ( ; )g t   and 

( )h x . Moreover, since r  is a one-to-one 
1 *( )T r T  and therefore the joint probability density 

function of the sample can also be written as  

1 *

1 * * *

( ; ) ( ( ); ) ( ( ( ( )); ) ( )

( )( ( ); ) ( ) ( ( ); ) ( )

f x g T x h x g r T x h x

g r T x h x g T x h x

  

 





 

 
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and thus by the factorization theorem  * ( )T r T  is also sufficient for  . According to this 

result, since 
1

n

i
i

T X


  is sufficient for p  in the example (a), nX  is also sufficient for the same 

parameter. In the example (b) we showed that    2

1 1

,
n n

i i
i i

T X X X
 

 
  
 
   is sufficient for  2( , )   

and for the same reason the estimator  
* 2( ) ( , )n nT X X S  is also sufficent for the same parameter 

2( , )  . In the example (d) since 
1

n

i
i

T X


  is sufficient for  , the estimator *

1

ln( )
n

i
i

T X


   

is also sufficient for the same parameter  . 

 

UMVUE Estimators : 

 

 As we have noted earlier, we want to use the most efficient unbiased estimators in the 

estimation. Usually such estimators may not exist. We have defined the efficient estimators 

before. That is we say that and estimator  1T  is relatively more efficient than 2T  if 

1 2( ) ( )Var T Var T  for all  . That is, it is possible to consider as many estimators as for a 

parameter  . Consider a class of unbiased estimators for a parameter ( )    as 

{ : ( ) ( )}T E T    . If there exists and estimator T    such that  

    *( ) ( )Var T Var T   for all *T   and for all    

the estimator T  is said to be the most unbiased estimator for ( )  . That is the estimator T  has 

the smallest variance among all unbiased estimators of ( )  . In other word, the estimator T  is 

the Uniformly Minimum Variance Unbiased Estimator for ( )   (the UMVUE estimator). 

Finding such an estimator may be difficult. In many cases the UMVUE estimators do not exist. 

The following theorem allows us to find the UMVUE estimators under some certain cases. 

 

 Theorem (Cramer Rao’s Inequality):  Let 1 2, , , nX X X  be a random sample from a 

population with probability or probability density function ( ; )f x   and W  be any estimator 

such that ( )E W  is differentiable with respect to  . If for a function ( )h x with (| ( ) |)E h X    

satisfies 

   ... ( ) ( ; ) ... ( ) ( ; )
d

h x f x d x h x f x dx
d

 
 

 
   

       

then  
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 

2

2

( )

[ln( ( ; ))]

d
E W

d
Var W

E f X












 
 
 

  
     

 . 

dir. 

 In this inequality, the sample does not have to be independent and identically distributed 

random variables. If we have independent and identically distributed random sample then, the 

inequality can be written as 

 

  

2

2

2

( )

( ) (say )

ln ;

d
E W

d
Var W CRLB

n E f X












 
 
  
 

      

. 

 According to this inequality the variance of any estimator W is greater than CRLB. 

Therefore if we can find an unbiased estimator for ( )   (usually   or ( )E W ) such that its 

variance is equal to CRLB, then the estimator is the UMVUE estimator for ( )E W . That is, if 

“=” holds in the Cramer-Rao’s inequality, the estimator is the UMVUE estimator for ( )E W .  

 Example a) Let 1 2, , , nX X X  be a random sample from Poisson ditribution with the 

parameter  . The probability function of Poisson distribution is 

 ( ) / ! , 0,1,2,...xP X x e x x
      

 Note that ( )nE X   and ( ) /nVar X n  . Moreover ( )nE X  is fdifferentiable with 

respect to   (which is 1 ).  Now let us calculate Cramer Rao’s Lower Bound (CRLB). The 

numerator is 1 . In order to calculate the denominator the probability function  

 ln( ( ; )) ln( )) ln( !)f X X X       

and the derivatives are  

  ln ; 1
X

f X 
 


     

 and    
2

2 2
ln ; .

X
f X 

 


    

 

and the mean of the secon derivative 

   
2

2 2 2 2
ln ; ( )

X n n n
n E f X n E E X   

   

   
               

 

and thus for nW X  Cramer-Rao’s inequality can be written as 
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 
 

  

2

2

2

1

ln ;

n

n

d
E X

d
Var X

nn n
n E f X







 

 

 
 
    
   

          

. 

 Since the equality holds, the estimator nX  is the UMVUE estimator for  . because the 

variance of any estimator can not be smaller than CRLB. 

b) Let 1 2, , , nX X X  be a random sample from Bernoulli distribution with the parameter 

p . We know that ( )p nE X p  and it is differentiable wit respect to p  (which is 1) and  

( ) (1 ) /p nVar X p p n  . The probability function of the distribution for 0,1x   is  

 1( ; ) ( ) (1 )x x
pf x p P X x p p       

and  

1ln( ( ; )) ln[ (1 ) ] ln( ) (1 ) ln(1 )X Xf X p p p X p X p      . 

The second derivative and its expected value is calculated as 

 

  

  

2

2 2 2

2

2 2 2

1
ln ;

(1 )

1
ln ;

(1 )(1 )
p

X X
f X p

p p p

p p n
n E f X p n

p pp p p

 
     

 

    
                 

 

and therefore the Cramer-Rao’s inequality for the estimator nW X  can be written as 

  
 

  

2

2

2

(1 ) 1 (1 )

ln ;
(1 )

p n

p n

p

d
E X

dpp p p p
Var X

n nn
n E f X p

p pp

 
 

  
   

   
          

. 

 Since “=” holds instead of " "  for the estimator nX  , the sample mean nX  is the UMVUE 

for the parameter p .  

 c) Let 1 2, , , nX X X  be a random sample from exponential distribution with the parameter 

 . Again nX  is the UMVUE estimator for  . Note that ( )nE X   and ( ) /nVar X n   and 

the expected value is differentiable with respect to   (which is 1) The probability density 

function of the distribution is  
/( ; ) (1/ ) xf x e     for 0x   and the derivatives in the 

inequality are 

    ln ; ln
X

f X  
 


     

 and     
2

2 2 3

1 2
ln ;

X
f X 

  


    


. 
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Therefore the expected value of the denominator at the Cramer-Rao’s inequality is 

 
2

2 2 3 2 3 2 3 2

2 ( )1 2 2
ln( ( ; ))

n E XX n n n n
n E f X n E 

 



       

   
                 

. 

Thus, The Cramer-Rao’s inequality for the estimator nX  is 

 
 

  

2

2 2

2

22

1

ln ;

n

n

d
E X

d
Var X

nn n
n E f X







 




 
 
    
   

         

. 

 That is, in the Cramer-Rao’s inequality “=” holds instead of  " "  and therefore  the estimator 

nX  is the UMVUE estimator for   .  

 

 Cramer-Rao’s inequality is not applicable for some distributions especially if the range of 

the distribution depend on the parameter (like uniform distribution) we can not apply Cramer-

Rao’s inequality. The probability density function of the uniform distribution 

(0( ; ) (1/ ) ( )xf x I x     and logarithm (and therefore the derivative) is undefined. Thus, we 

can not find the UMVUE estimator for uniform parameter   by using Cramer-Rao’s inequality.  

 For the case where Cramer-Rao’s inequality is not applicable, we use the following method 

to find the UMVUE estimator. First remember that for the random variables X  and Y  we have   

( ) ( | ))E X E X Y   and ( ) ( ( | )) ( ( | ))Var X E Var X Y Var E X Y  . 

 The following theorem is a useful tool to find the UMVUE estimator. 

Theorem (Rao-Blackwell) Let 1 2, , , nX X X  be a random sample from a population with 

parameter  . Let W  be any unbisaed estimator for ( )   and T  be a sufficient estimator for 

. In this case the estimator ( ) ( | )T E W T   is a better unbiased estimator for ( )  . That is, 

( ( )) ( )E T      and ( ( )) ( )Var T Var W   . 

Proof: Since T  is sufficient the conditional probability of X ’s given T  does not depen on 

the parameter and thefore the conditional expectation ( ) ( | )T E W T   does not depend on  . 

That is, ( )T  is an estimator. On the other hand, the mean of ( )T  is calculated as  

 ( ( )) ( | ) ( ) ( )E T E E W T E W       . 

That is, ( )T  is unbiased for ( )  .  Since, ( ( | )) 0E Var W T   the variance of W  can be written 

as  

  ( ) ( ( )) ( ( | )) ( ( ))Var W Var T E Var W T Var T         
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and therefore     Var T Var W    which completes the proof.  

 According to this theorem, when we find a sufficient estimator (say T ) for    (by 

factorization theorem) and an unbiased estimator (say W ) for ( )   we can always find a 

“better” unbiased estimator for ( )  . Of course, we can find may unbiased estimator for ( ) 

. Our goal is to find a unique unbiased estimator among all unbiased astimator of ( )  . The 

following theorem guarantees the unique best unbiased (the most efficien unbiased) estimator. 

This requires the completeness of the sufficient estimator that we are not going to discuss here.  

Theorem (Lehmann-Scheffe Uniqueness Theorem): If W  is any UMVUE estimator     

then it is unique.  

Theorem Under the conditions of Rao-Blackwell Theorem if the sufficient estimator T  is 

also complete then the estimator ( ) ( | )T E W T   is the unique UMVUE estimator for ( )E W

.  

(For the proof See Casella ve Berger, 2002, page  347). 

Example a) Let 1 2, , , nX X X be a random sample from the uniform distribution with 

parameter  . As we remember, we could not apply Cramer-rao’s inequality for the uniform 

population. Note that the estimator  ( )nT X  is sufficient for   (se the example in the 

sufficieny part (c) above). On the other hand the estimator ( )( 1) /nW n X n   is unbiased for 

 . Therefore by Rao-Blackwell Theorem    T E W T   is the unique UMVUE estimator 

for   (completeness of  ( )nX  is verified) : That is, the UMVUE estimator for   is 

     ( ) ( ) ( )
1 1

n n n
n n

T E W T E X X X
n n

  
   

 
 . 

b) Let 1 2, , , nX X X  be a random sample from Bernoulli distribution with the parameter 

p  and let us try to find the UMVUE estimator for the variance ( ( ) (1 )p p p   ) of Bernoulli 

distribution.   

 Note that the estimator 
1

n

i
i

T X


   is sufficient for p  and the it distribution of T  is Binomial 

(that is, ~ ( , )T Binom n p , it is also complete).  That is T  is complete and sufficient estimator for 

p . Since 
2( ) (1 )nE S p p  , 

2
nS  is unbiased for (1 )p p . By  Rao-Blackwell Theorem, 

2( | )nE S T  

is the UMVUE estimator for (1 )p p . Now, we need to calculate the conditional expectation. Since 



11 
 

X  distributed as Bernoulli, the random variable takes the values only 0  or 1  and therefore we have 

2

1 1

n n

i i
i i

X X
 

  . Therefore the conditional expectation is 

   
2

22 2

1 1 1 1 1

2 2

1 1 1 1 1

2
2

1 1

1 1 1

1 1

1 1 1 1

1 1

1 1

1

n n n n n

n i n i i i i
i i i i i

n n n n n

i i i i i
i i i i i

n n

i i
i i

E S T E X X X E X X X
n n n

E X X X X X
n n n n

X X
n n

    

    

 

    
                

      
         
          

  
   
  

    

    

   
2 2

1

1
.

1

n

i n n
i

X X S
n 

   
 




 

 According to Rao-Blackwell Theorem 
2
nS  is the unique UMVUE estimator for 

( ) (1 )p p p   . 

Now, for the sample sample, let us try to find the UMVUE estimator for 
2( )p p . Note that 

the estimator T  is sufficient and complete. Moreover, if we define an estimator W  as  

2

1 1

1

( 1)

n n

i i
i i

W X X
n n  

  
   

    

   

it is unbiased for 2p   because  

 
2 2

1 1 1 1

2

1 1 1

2 2

1 1

( 1) ( 1)

1

( 1)

1 1
(1 )

( 1) (

n n n n

p p i i p p i p i
i i i i

n n n

p i p i p i
i i i

E W E X X E E X E X
n n n n

Var X E X E X
n n

np p n p np
n n n n

   

  

        
           

            

       
         
          

     
  

   

  

2 2 2

2 2 2
2 2 2 2

1)

1 ( ) ( 1)
.

( 1) ( 1) ( 1)

np np n p np

p n n p n n
np n p p

n n n n n n

   
 

       
   

 

According to Rao -Blackwell Theorem 

 
2 2

1 1 1 1 1

1 1

( 1) ( 1)

n n n n n

i i i i i
i i i i i

E W T E X X X X X W
n n n n    

       
                       

      

is the unique UMVUE estimator for 2p . 

 We use Rao-Blackwell Theorem to find the UMVUE estimators of a parameter or its 

functions. 
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 Example: a) Assume thatthe number of customers enter a store in Kızılay for a certain time 

period is distributed as Poisson with parameter  . On the same time period the number of 

customers in n  different day are 1 2, , , nX X X . That is we have a random sample from 

( )Poisson   distribution. The probability function of the sample is ( ) / !xP X x e x
    for 

0,1,2,...x  . Using the Cramer-Rao’s inequality the UMVUE estimator for   is nX . Suppose, 

we want to estimate the probability that no customers will come to store at the same time period.  

That is, we want to estimate ( ) ( 0)P X e 
     . Note that  

1

n

i
i

T X


   is sufficient and 

complete for the parameter  . An unbiased estimator for ( )   can be choosen as 

11 , 0

0 , . .

X
W

d y


 


 

 

Note that the randomn variable W  takes only the values 0  or 1  and therefore W  is distributed as 

Bernoulli and therefore the espected value of W  is  

1( ) 1 ( 1) 0 ( 0) ( 1) ( 0)E W P W P W P W P X e         
 . 

That is W  is unbiased for ( ) e    . By Rao-Blackwell Theorem, ( ) ( | )T E W T   is the 

unique UMVUE estimator for ( ) e    . Now, we need to calculate this conditional 

expectation. Remember that ~ ( )T Poisson n  for 0,1,2,...t  . That is the probability function 

of T   is 

  ( ) ( ) / !n xP T t e n t
   . 

 Note also that since 1X  is independent wiy-th the random variables 2 3, , , nX X X  we also 

have 2 3 ~ (( 1) )nX X X Poisson n     . Therefore the conditional expectation is  

       

 
 

 

 

 

   

 

 

 

1 1 21
1

1 2

( 1)

1 2

1 2

( ) 0 0 1 1 1

0,0,
0

( 1) / !0

/ !

/ ! ( 1)

/ !

n

n

Tn

n

tn
n

n t t

n t

t E W T t P W T t P W T t P W T t

P X X X X tP X T t
P X T t

P T t P X X X t

e e n tP X P X X t

P X X X t e n t

e t n

e t



 

 

 


















  







          

     
    

    

            
     

  




( 1) 1
1 .

tt

t t

n

nn n

  
   

 

 

Therefore the UMVUE estimator for ( ) e     is 
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  1
1 1

( ) 1 1 .

n

i
i

T X

T E W T
n n

 


   

       
   

 

 

Since this estimator can be approximated for large number of observations as (1 / )n aa n e   

the UMVUE estimator for e   can be approximated as  

  1 1

1

1 1 1 1
( ) 1 1 1 1

n n

i i n
i i n

T X n X n X
n X

T E W T e
n n n n

 

 
 

 
 

       
                

       
  

for large n . Since the UMVUE estimator of    is nX , the UMVUE estimator of   is 

approximately nX
e


 for large n .  

 Suppose the owner of the store wants to decide the openning hour in the morning. He/She 

counts the number of customers between 8:00- 9:00 o’clock for 10 days. Suppose he/she counts 

the number of customers for 10 days are  

2 3 2 1 0 1 2 0 2 1. 

based on these observed values the probability that no customers will come to the store between 

8:00-9:00 o’clock in the morning is estimated as (1 1 / ) 0.229nn x
n  . The mean number of 

customers will come to the store between 8:00-9:00 is estimated as  1.4nx  . Moreover, the 

estimated probability is (1 1 / ) 0.229nn x
n   and if we assume that 10 number of customers is 

large enough it can be estimated as 0.246nx
e


 . Note that these estimated probabilities are 

very close to each other. If we had more number of observations we get much closer estimated 

probabilities.     

b) Now for the same example suppose we want to estimate the probability that only one 

customer will come to the store between 8:00 to 9:00 o’clock in the morning. That is we want 

to estimate ( ) e      or we want to find the UMVUE estimator for ( ) e     . Again, T  

is a sufficient and complete estimator for   and an unbiased estimator for  ( )   can be choosen 

  
11 , 1

0 , . .

X
W

d y


 


 

Again, the random variable (the unbiased estimator for ( )  ) W  takes only the values 0  or 1  

which is a bernoulli random variable and the expected value of W can be calculated as 

  1( ) 1 ( 1) 0 ( 0) ( 1) ( 1)E W P W P W P W P X e         
  . 
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 That is, the estimator W  is unbiased for ( )  . next we need to calculate the conditional 

expectation.  as   This contditional expectation can be calculated as, 

 

       

 
 

 

 

 

   

 

 

 

1 1 21
1

1 2

1( 1)

1 2

1 2

( ) 0 0 1 1 1

1,1,
1

( 1) / ( 1)!1 1

/ !

/ ( 1)!

n

n

tn

n

tn
n

n T

t E W T t P W T t P W T t P W T t

P X X X X tP X T t
P X T t

P T t P X X X t

e e n tP X P X X t

P X X X t e n t

e t

e



 

 

 








 





  







          

     
    

    

              
     

  




1 1( 1) ! ( 1) 1
1 .

( 1)! 1/ !

tt t

n T T T

n t n t

t n nt n n

    
   

   

 

Therefore the UMVUE estimator for ( )  can be written as, 

  111 1
( ) 1 1 .

1 1

n

i
i

n

iT X
i

X
T

T E W T
n n n n

 


   
       

    


 

In a similar way, for large n  the estimator can be approximated as  

  1 1

1

1

1

1 1 1
( ) 1 1 .

1 1

n n

i i
i i n

n

i X n Xn
n Xi

i n

i

X
n

T E W T X X e
n n n n n

  

 
 

  



       
                   


  

 Note that the UMVUE estimator of   is nX  and the UMVUE estimator for ( )   is 

approximated as ( )nX . For the same observations given in (a), the probability that only one 

customer will come to the store between 8:00-9:00 o’clock in the morning can be approximated 

as 

  
1.4(1.4) 0.345nx

nx e e
   . 

As it is seen the above examples, if the UMVUE estimator for   is ˆ
n  then ˆ( )ng   is 

approximately the UMVUE estimator for ( )g  . This can not be true in general. However, this 

property is always valid for the MLE estimation that we are going to see next.  

For example let 1 2, , , nX X X  be a random sample from a Poisson distribution with the 

parameter  . As we have seen earlier, the UMVUE estimator for   is nX  (the sample mean). 

On the other hand, the UMVUE estimator for 
2  is 

2 2( ) /W T T n   where 
1

n

i
i

T X


  . Note 

that since 
2 2 2[( ) / ]E T T n    the estimator 

2 2( ) /W T T n   is unbiased for 
2 . Moreover, 

since T  is suffivient and complete statistic, according to Rao-Blackwell Theorem the 

conditional expectation is calculated as  
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      2 2 2 2( ) / /T E W T E T T n T T T n W       

and therefore the UMVUE estimator for 2  is  

 
2

2
2 2 2

2 2
1 1

1 1 1 1
/

n n

n i i n n
i i

T T
W T T n X X X X

n n n nn n  

   
          

   
   
  . 

 That is, when the UMVUE estimator for   is nX , the UMVUE estimator for 
2( )    is 

not ( )nX . But for large n  the UMVUE estimator of ( )   is ( )nX . On the other hand, since 

(1/ )n PX O n   for large n   the estimator nW  can be approximated as  
2

n nW X  dir. 

 


