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11. Simple Linear Regression

Let X and Y be two random variables with join probability (or probability density)
function f(x,y) and the marginal probability (or probability density) functions fy (x) and

fy (y) respectively. From the joint probability function we can find the conditional probability

(or probability density) function of Y given X =X as

fyx o (Y] X) = ff(x(’xy)) fy (x)> 0
X

we can also calculate the conditional expectation of Y given X =X as

Y YyP(Y=y|X =x) , discrete case
y

E(Y | X =x)=
. 9 fyfv|xzx(y|X)dy , continuous case.
y

Obviously, this conditional expectation is a function of x , thatis E(Y | X = x) = h(x) . This
conditional expectation is known as the regression of the random variable Y on X . If the
function h is a linear function of x then the regression is called a linear regression, otherwise
it is a non-linear regression of Y on x. In this class we will consider the case a linear regression.
That is,

EY | X=x)=h(X)=a+ SX.

Moreover, let (Y, Xy, X,,...,X,) be the random variables with joint probability (or

.....

conditional ~ probability  (or  probability  density)  function of Y given

.....

expectation of Y given X; = x;, X, =X;,.., X, =X as

EQY | Xy =%, Xg =Xgpeees Xy = Xp) = N(Xg, Xg00000 %)



This conditional expectation is known as multiple regression of Y on X;, X,,..., X ;. As it

is obviously seen, this conditional expectation is a function of x,%,,...,x,, namely,
h(Xl,xz,...,xp). If h(xl,xz,...,xp) is a linear function of x’s then it is a multiple linear

regression of Y on the variables Xgy Xgyeeey X namely, if

p

h(X, Xp,0s Xp) = g + 01X + Q% +...+ X, then it is multiple linear regression of Y on
the variables x;, x,,...,X,, otherwise it is a non-linear regression. For the case p =1 the linear
regression is named as “simple” linear regression. In this class, we are going to investigate the
simple linear regression.

The main goal in the linear regression is to estimate the function h. In the real life, we fixed
the value of x and measure the value of Y . As it is clear, it is possible that we can observe
different values for Y at the same value of X’s. That is, we consider a function

Y,=a+px+e,i=12..,n (1)
and we say that it is a regression equation if
e ¢ ’sare independent and identically distributed random variables such that E(e;) =0
and Var(e,) = o’
e X;’s are fixed in the sense that they are not random.

Moreover, in order to make statistical inference we also assume the normality of e, ’s. That

is, in order to say that the equation in (1)
e & ~iidN(0,0?)
e X;’s are fixed in the sense that they are not random.

Note that if e ~i.i.d N(0,5°) then

E(Y;))=E(a+p8%+)=a+LX%+E(g)=a+ /X
and
Var(Y;) =Var(a + S x +¢&) =Var(g) = o2
and therefore, Y;’s are independent (not identically) normally distributed random variables.
That is,
Y, ~ N(a+,b’xi,0'2).
Consider the simple linear regression equation given in (1)

YI =O{+,3X|+el ,i=l,2,...,n.



Here,

e Y,’s are the dependent variables (dependency means that they are function of X’s).

Actually they are independent random variables.

e X;’s are independent variables (or explonatory variables which are not random)

e ¢ ’s are the error terms ( they are independent normally distributed random variables
such that E(e;) =0, Var(e;) = o, or simply e, ~i.i.d N(0,62))

e  and B arethe parameters to be estimated. Actually there is another parameter to be

estimated which is the variance of the error term, ol

Y, = a+ f X; + & ,1=12,..,n
%/_J
dependent var. parameters ; explonatoryvar. errorterm

Consider two variables X and Y . If there is a functional relationship (e.g. Y = f (X))
between these variables it is a deterministic relationship (shown in the following figure (a)).
For example, if there is a relationship like Y =2X +3, we observe Y =5 for X =1 and Y =3
for X =0. However, in the reality, it is possibe that we can observe Y =4.8 for X =1 and
Y =3.2 for X =0. Moreover, if we repart the experiment at the same conditions, it is possible
that we can observe Y =5.1 for X =1 and Y =2.7 for X =0. That is there is a stochastic

relationship between these two random variable (see the following figure (b) below). .
AY AY

@ ®)

Figure. Graph of y=2x+3 line

We estimate the parameters o and g by minimizing error sum of squares. Note that from
the regression equation the error term can be written as ¢; =Y; —a — fX; and therefore error

sum of squares can be written as

Qo f) = 362 = XY~ — %)’ @

i=1 i=1



In order to minimize this sum of squares, we take the first derivatives and equate to zero.
The solutions (say & and £ are either a minimum or a maximum. To make sure that they are

minimum we need to look at the second derivatives. If the second derivatives at these solutions
are positive then they are minimum (we are not going to look at the second derivatives here and

assume that they are minimum). The derivatives are;

9Q@h) _ 55 v —a-px) | [0
oa i=1 =
%;’ﬂ):—zg&(n_a_ﬂxi) 0

and from these equations we have the following equations:
n n n
22 (Yi—a=-px)=0 = 2Yi=an+pBY X
i1 i=1 i=1
n n n n 2
22 % (Yi—a=pB%)=0= 2xYi=aX X +prX.
i=1 i=1 i=1 i=1

That is, we have the following equations (called NORMAL EQUATIONS):

in =an +p i X

in:l i i:l (3)
2XYi=a XX +p lez

i=1 i=1 i=1

Note that these solutions are obtained by minimizing error sum of squares. And therefore

these estimators are also known as “ordinary least square” (OLS) estimators. Moreover, the

estimator & is the “intercept term” and A is the “slope” of the regression equation. The

solutions (say @ and f3) to these equations are

(6 -0 Vo)

~ .

B=== =X and ¢ =Y, - X,
S-%)  Om
i=1
where
_ 1 n _ 1 n n —\2 n _ _
Yo :_zYi » Xn =—in » S = Z(Xi —X5) and SXy = Z(Xi _Xn)(Yi _Yn)
Ni=1 Ni=1 i=1 i=1

n A
and since > (x; —X,) =0 the sum in the denominator in S can be written as
i=1

04 ~%)0% ~ %) = 20~ o).



and therefore the estimator of B can be written as

Y (% —X )Y =V)) (% =KV,
ﬁ:ﬁ: Ei(xr: A = E(XI o = Enl[(xi _XH)JYi = iini .
Syx 3 (% _Yn)z Syx i= Syx i=1

That is, /4 is a linear combination of Y;’s. Similarly, the estimator of « is also linear
combination of Y;’s because

a=Y, - i_i
n;j

n L _ nf1 X (X- —7) n
Z —X Z Z( XnWi)Yi ZZ[———n — jYi =25 .
i=1 i=1 =1 i=1\ N Sxx i=1

That is, the OLS estimators of o and g are linear combinations of Y;’s. In other words,

they are linear in Y; ’s.

In a summary,
A (5 —%) _(x-X,)
:B:ZWin W = n ! n IS L
= 2. (X ~X,)? X
j=1
n ool X(i-%) 1 X(%-%)

2= SY; 'n n g

o EL it Z (XJ Xn)2 XX

=
Notes:

n n
a) Notes on the linear estimator of 5= wY,
i=1

n 1 n B
° ZWFS—Z(Xi X,)=0
i=1 XX i=
d n - S 1 1
¢ W= X=X =g e
i=1 Syx i< Sy x 3 (x _Yn)z

o i=1 Sxx i=1 XX i=1
10 _ X, & _ 10 _ S
:S_Z(XI Xn)2+_nZ(Xi_Xn):S_Z(XI_Xn)ZZi:l
xx 1=1 xx 1=1 xx 1=1 XX

ND

b) ) Notes on the linear estimator of & :\7” - ,@Yn

° ivi[é %% - X)j —z—”zn:(xi—in):

n S xx i=1



— — \\2 — — - —
Zsiz = Zn:(l_ Xn(xi _Xn)] _ zn: i2_ Xr12(xi ;Xn)2 _ an(xi _Xn)
i1 =N Sk i-1\ n S5 Sy
n 1 X2 ., 2x & a1 o x?s, 1 x?
I S U A D NCTOED FReb St E
iin’ S)%x =N " Sy i= T An? S)%x N S
:%4— n Xn
Z(Xi Xn)2
i=1
n o1 X,(%—X 10 X, &
lesl =2Xi(—— n(% n)jz_zxi_ : ZXI(XI Xn)
i=1 i=1 n Sxx n i=1 Sx)( i=1
- XL - o oy o X2 2 X _
* = __Z(Xi =X, + X)) (% = X) =X, __Z(Xi -Xp) +_Z:(Xi —X5)
Sx>< i=1 S><x i=1 xx i=1
D
= =X,—X, =0
n SXX n n
Statistical Properties of OLS Estimators:
a) The OLS estimator of g
n _ _ n _ _
. Z(Xi - Xn)(Yi _Yn) S Z(Xi - Xn)(Yi _Yn) n
ﬂ=|:l ! =S_Xy=|:1 - :zWiYi
Z(Xi _in)2 X Z(Xi _Xn)2 =
i=1 i=1
e f isan unbiased estimator of B because
n n n n n
E(B)=2WE(Y)) =2 W(a+B%)=aXw+B2xW=0+81=4.
i=1 i=1 i=1 i=1
A 02 02
J Var(ﬂ)zn—:s— because
Z(Xi _Xn)2 X
i=1
2 c 2 250 12 o’ o’
Var(p)=Var| > wY; =X wVar(Y]))=c" > W =———=—.
i=1 i=1 i=1 > (% — %) Sy
i=1
e If ¢s are normally distributed random variables (e, ~i.i.d N(0,5%)) then Y,’s are

independent and normally distributed random variables and therefore any linear

combinations or independent normally distributed random variables is also normally

distributed. Therefore, 8~ N(8,06%/S,,).

b) The OLS estimator of «



a=Y, —Bfn = i[l—M]Yi = isiYi
i-1

i=1 n Sxx
e ¢ isanunbiased estimator of &« because
n n n n
E(@)=>SEM)=2s(a+px)=ads+BYxs=a+p0)=c.
i—1 i—1 i—1 i—1
o2
e Var(4q)=o? F + ;(L} because
n

XX

&2 2&2_ 2|1 X
Var(a) =2 sfVar(Y,)=c°>.sf =0 =+ |.
i=1 i=1 n S,
o If ¢’s are normally distributed random variables (¢ ~ii.d N(0,c%)) then Y,’s are

independent and normally distributed random variables and therefore any linear

combinations or independent normally distributed random variables is also normally
distributed. Therefore, & ~ N(«,Var(a)).
Note (IMPORTANT) : As we have shown above, the OLS estimators of « and g are

unbiased and linear combinations of Y;’s. It is possible that we can find many linear and
unbiased estimators. However, these OLS estimators have the smallest variance among all
linear and unbiased estimators of & and g . That is, the OLS estimators & and /3 are the Best
Linear Unbiased Estimators (BLUE) of « and S.
The value of OLS estimator of S can also be written as
n _ _ n o
2 (6 =X)Yi=¥n) 2 %Y —NX Y,
IB _i=l _i=l
- :

n
Z(Xi_Yn)2 Z:Xiz_nin2
i i=1

After we calculate the values of the OLS estimaor, we write the “fitted regression line” as

g =G+ % ,i=12,..n )

and the residuals” are calculated as & =y, -y, ,i=12,...,n.

Example: Assume that the following data is appropriate for a simple linear regression. That
is, we have only 5 observations.
X =X ‘ -1 0 1 2 3

Y=y‘5 8 12 15 20

The scatter plot and some of calculated values are given below.
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- n=5,X,=1,Y,=12
20 - 2
5 5 5
i Y% =5, 3% =15, >y =60,
10 - =1 i=1 i=1
2
® 5
‘ ° ‘ ‘ S =97 S 2 =858
2 0 2 a _Z;inyi = ’Z;LYi =
i= i=

Now, we can calculate the values of the OLS estimators ¢ and 3 as

n
332 —nx? 15-5@1)% 10
n

i
i=1

B=

and
G=Y,-f% =12-(3.7) (1) =83
and thus the fitted regression line is
Y=+ % =83+37x,i=12,.,n
and the residuals are & =y, — V;,i=12,...,n. The calculated fitted values (or predicted values)

and the residuals are calculated and given below.

§,=83+3.7% =¥, =83+3.7(-1) = 4.6 6=y, Y, =5-46=04
§,=8.3+3.7x, = §, =8.3+3.7(0) =8.3 &,=y,—y,=8-83=-0.3
§5=8.3+3.7x =¥, =8.3+3.7(1) =12.0 8 =Y, — §5=12-12=0.0
§,=8.3+37x, =V, =83+37(2)=15.7 8, =y, -9, =17-17.7=-07
Js =8.3+3.7x =¥, =8.3+3.7(3) =19.4 6 = ys — 5 =20-19.4=0.6

Predicted values and the residuals

We put all the observed, predicted and the residuals in the following table:

i [ x [ [ YT 9] g2 [e] & [xe

D>
<

1-1]1 5 | 25| -5 46| 21.16| 04| 0.16 -1 184




21 0| 0] 8 |64]|0 8.3 | 68.89 -| 0.09 0] -2.49

0.3
3] 1 1 |12 | 144 12 12 | 144.0 0 0 0 0
4 | 2 4 | 15 | 225| 30 | 15.7 | 246.49 -1 0.49 - -
0.7 1.4 | 10.99

5| 3 9 | 20 |{400| 60 | 19.4|376.36 | 0.6 | 0.36| 1.8 | 11.64

>| 5 |15|60 88|97 | 60 | 869 00| 1.1 |00 | 0.0

When we check the table, we have the folloing interesting results:

n n n 2
=0, %96 =0, z zl 62
i=1 i=1 i=

M:s

-

ZYiZZf/i ' iATZO’ %

1

Actually, for any regression equation including an intercept term, the above equalities are
always valid. That’s why we use the residual plots in order to check the assumptions. However,
the the regression equatio ndoes not include and intercept term (o =0) the above equalities
may not satisfy (e.g. the sum of the residual may not be zero, etc.) . In the following, we show
that the above equalities are actually true in general.

Consider the simple linear regression line given in (1) and the normal equations given in (3).
The simple linear regression equation

Yy=a+pX%+g ,i=12,..,n

and the normal equations

n

. g}=é(yi—9i>=%<yi—&—ﬁxi>=%yi{n&+ﬁixi =3 i- 2% =0

¢ O:%AT:%(yi_yi):Zn:yl Zyl = Zyl ;Lyl

i=1 i=1
%Xiéf = %Xi(yi Vi) = ﬁ:(xiyi —ax —,éxiz)

:%XiYi {aZX +/3’ZX} Zn: yi_%XiYi:O

=1

b

n n . n .
. Z =S &(G+fx)=aXé+AYxE=0+0=0,
i=1 i=1 i



ANOVA Table: From the above example, we have also observe that

M:
D M:

1

The second equality also implies that Y, = ?n . Using these equalities, we define the folloing

sum of sgaures

SST =2 (¥~ %) =297 12 . SSR=3(§ ~¥,)> = 29 g2 and SSE = 3'&7.

i=1 i=1 i=1 i=1 i=1

Here, SST stands for “total sum of squares”, SSR stands for “regression sum of squares”
and SSE for “error sum of squares”. Now, we are ready to construct the ANOVA table. In the
following,
d.f is the “number of degrees of freedom”, SoV is “source of variation”, MS is the “mean
squares” and F is the “value of F statistic”. The values MS’s are calculated by the
corresponding SS ’s divided by its degrees of freedoms and the value of F statistic is the ration

of MSR and MSE (mean square regression devided by mean square errors)

SoV d.f SS MS F

Regression 1 SSR MSR F
Error n-2  SSE MSE

Total n-1 SST

Example: Consider the previous example. We have calculated from the table above (n =5
) as
n n 2 n 2 n 2
i=1 i=1 i=1

i=1
Therefore,

n n
SST =3 (y; —V,)? = y* —ny? =858 —5(12)% = 858 — 5(144) =138
i=1 i=

n n n
SSR=Y(§: —V,)> = 92 —ny? =856.9 - 5(12)* =856.9 — 5(144) =136.9 and >e’=1.1
i=1 i=1 i=1

Thus the ANOVA table is constructed as follows.
SoV d.f SS MS F
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Regression 1 136.9 1369 373.36
Error 3 1.1 0.3667

Total 4 138.0

From the ANOVA table, the value of MSE is an unbiased estimate of o2 (E(MSE) = o?)

and the ratio

RZ = SSR )
SST
is the percentage of the variability explained by the model. That is, the percentage of the

variability in the dependent variable Y explained by the explanatory variable x. The larger
value of R? indicates that a better model (X ’s explain Y ’s better). In the above example, the

OLS estimate of o2 is 6 = MSE =0.3667 and

RZ _ MSR _136.9 ~0.992
MSE 138
which means that more than 99% of all variability in Y ’s are explained by the model (or the

explanatory variable X).

Example: Assume that the folloowing data set is appropriate for a simple linear regression

equation.

X1y [ Xy (X p ¥y | xpy | xpy  (Xxpypx,Q By

16 | 266| 15 [ 254 | 21 | 31.7| 20 | 30.8| 25 |357| 19 |29.0| 18 | 285

18 | 28.7| 23 |33.1| 17 [ 278| 22 |325| 20 |30.5| 14 | 240 | 22 | 325

17 |27.1| 18 | 28.3| 25 ({354 | 21 |31.1| 15 254 |19 |29.3| 12 | 23.0

17 27921 {316 |19 |29.0 | 18 (289 | 21 |31.2| 23 | 33.7| 15 | 285

20 1 30.2| 19 |300| 23 |33.7| 21 |31.1| 21 |314 |20 |305| 16 |28.7

16 |1 26.7| 19 | 299 | 20 | 306 | 19 {293 | 18 | 289 | 22 | 32.2 | 13 | 240

16 [ 26.2| 21 |315| 15 [ 256| 20 | 30.3| 20 | 30.8| 13 | 23.2| 15 | 28.0

18 | 283 | 27 |373| 18 {283| 21 |31.1| 19 |29.2| 17 |274| 16 | 322

For this data set, we assume that a simple linear regression equation is appropriate. That is,

we have

11



YI =a’+ﬂXI +e| y i =1,2,...,56 .
In order to calculate the values of the OLS estimators, some of the calculated values are given

below:
56 56 9 56 )
> % =1054, > %~ =20380, > (X —X,)° =542.214286, X, =18.824286
i=1 i=1 i=1

56 56
>y, =1653.8, y,=29.5321429, > xy; =31618.6.
i=1 i=1

Therefore (by considering the roundig errors) we have

n
in Yi — rlXnYn
n_i=1

p==
x? —nx?
=

~ 31618.6 -56(18.82143)(29.53214)  491.722
542.21 542.214

= 0.90688

2

and
a=y,- ,Bin =29.532149 - (0.90688)(18.8214286) ~12.46343
and therefore the fitted regression line is,
Y, =12.46 +0.907x, ,i =1,2,...,56.
The plot of the observed values (with “stars”) and the fitted regression line (the straight line)

is given in the following figure.

The plot of observed values and the fitted regression line

Some other statistical values have been calculated bu running the following SAS codes.
You can also verify the same results in any statistical package program (or in excel).

data a; input X y@ @; cards;

16 26.6 15 25.4 21 31.7 20 30.8 25 35.7 19 29.0 18 28.5
18 28.7 23 33.1 17 27.8 22 32.5 20 30.5 14 24.0 22 32.5
1727.1 18 28.32535.4 21 31.1 15 25.419 29.3 12 23.0

17 27.92131.61929.0 18 28.9 21 31.2 23 33.7 15 28.5
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2030.21930.02333.72131.12131.42030.51628.7
16 26.7 19 29.9 20 30.6 19 29.3 18 28.9 22 32.2 13 24.0
16 26.2 21 31.5 15 25.6 20 30.3 20 30.8 13 23.2 15 28.0
1828.32737.31828.32131.11929.217 27.416 32.2
proc reg; model y=x;

output out=out predicted=yhat residual=resid;

proc print data=out; var X y yhat resid,

run;

SAS Codes to analyze the data

The output of the above SAS codes is given below. When we investigate the output, we
observe that almost 90% of all variability in the dependent variable is explained by the model (
X’s). The parameter estimates are almost the same as we calculated above (rounding error).
later, we are going to use the same data to make some statistical inferences about the parameters
(hypothesis testing and confidence intervals). In the following, we also printed out the predicted

values and the residuals obtained from the model.

Obs x vy yhat resid

1 16 26.6 26.9735 -0.37346
2 15 254 26.0666 -0.66658
3 21 31.7 315078 0.19216
4 20 30.8 30.6010 0.19904
5 25 357 351353 0.56466
6 19 29.0 29.6941 -0.69409
7 18 285 28.7872 -0.28721
8 18 28.7 28.7872 -0.08721
9 23 33.1 333216 -0.22159

10 17 27.8 27.8803 -0.08033
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

22
20
14
22
17
18
25
21
15
19
12
17
21
19
18
21
23
15
20
19
23
21
21
20
16
16

19

325
30.5
24.0
325
27.1
28.3
354
31.1
254
29.3
23.0
27.9
31.6
29.0
28.9
31.2
33.7
28.5
30.2
30.0
33.7
31.1
31.4
30.5
28.7
26.7

29.9

32.4147
30.6010
25.1597
32.4147
27.8803
28.7872
35.1353
31.5078
26.0666
29.6941
23.3459
27.8803
31.5078
29.6941
28.7872
31.5078
33.3216
26.0666
30.6010
29.6941
33.3216
31.5078
31.5078
30.6010
26.9735
26.9735

29.6941

0.08529
-0.10096
-1.15970

0.08529
-0.78033
-0.48721

0.26466
-0.40784
-0.66658
-0.39409
-0.34595

0.01967

0.09216
-0.69409

0.11279
-0.30784

0.37841

2.43342
-0.40096

0.30591

0.37841
-0.40784
-0.10784
-0.10096

1.72654
-0.27346

0.20591
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38 20 30.6 30.6010 -0.00096
39 19 293 29.6941 -0.39409
40 18 28.9 28.7872 0.11279
41 22 322 324147 -0.21471
42 13 24.0 24.2528 -0.25283
43 16 26.2 26.9735 -0.77346
44 21 315 315078 -0.00784
45 15 25.6 26.0666 -0.46658
46 20 30.3 30.6010 -0.30096
47 20 30.8 30.6010 0.19904
48 13 23.2 24.2528 -1.05283
49 15 28.0 26.0666 1.93342
50 18 28.3 28.7872 -0.48721
51 27 37.3 36.9491 0.35090
52 18 28.3 28.7872 -0.48721
53 21 311 315078 -0.40784
54 19 29.2 29.6941 -0.49409
55 17 27.4 27.8803 -0.48033

56 16 32.2 26.9735 5.22654

The data, observed and predicted values and residuals

the parameter estimates and the results of regression analysis of dependent variable Y on the

explanatory (independent variable) variable X is given below.

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr>F

Model 1 44593064 445.93064 484.01 <.0001
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Error 54 49.75150 0.92132

Corrected Total 55  495.68214

R R o R AR R R R R R R R R S S R R R R R R AR AR R R R R R R R R R AR R R R R R R R R R R R R R R R R R R R

**

Root MSE 0.95986 R-Square 0.8996
Dependent Mean  29.53214 AdjR-Sq 0.8978

Coeff Var 3.25021

R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R AR R R R R R R

**

Parameter Estimates
Parameter Standard

Variable DF Estimate Error tValue Pr>|t]

Intercept 1  12.46343 0.78637 15.85 <.0001

X 1 0.90688 0.04122 22.00 <.0001

Estimation results and the ANOVA table

Statistical Inference on the Regression Parameters:

Consider the following simple linear regression equation given in (1)
YI =a+ﬂXl+el y i 21,2,...,1'].
Here, o and g are the parameters to be estimated. We estimated these parameters (OLS)
as
n _ —
. Z(Xi _Xn)(Yi _Yn) R
p=1= = and @ =Y, - BX,
$ 7 )2 Syx
Z (Xi - Xn)
i=1

and we calculeted their means and the variances as

SXX
When we assume the normality of the error terms, the OLS estimators ¢ and A are also

XX

2 o2
E(B)=4, E(@Q)=a, Var(B) :g— and Var(g) = o [%+XL}

normally distributed random variables (because they are linear combinations of independent

normally distributed random variables), namely
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B~N(B\Var(8)) and &~ N(a, Var(Q)).
These distributional properties imply that

p-B__ N(0,1) a-a N(0,1)

Nar(3) War(a)

A

IB _AIB -~ tn72 and Q -~ tn_z
s(B) s(a)
where
<2
s%(&) = MSE %+nx+ and s%(p) =nM—SE.
> (% = %,)? > (% = %)
i= i=1

Hypothesis testing for g :
We are going to consider the following hypotheses. For any one of the hypothesis we

calculate the same value of t statistic as
_B-h
s(p)

The hypotheses and their rejection rules are summarized below.

t

Hypothesis Rejection rule.

a | Hy: =/, against H, : > B, | Reject H, if t, >t _,(a) , P(t,_, >t, (@)=«

b | Hy:8=2, against H,: B < 3, | Reject H, if t, <-t, ,(a), P(t, , >t (@)=«

C | Hy:B=p,against H, : = S, | Reject Hy if |t, [>t,_,(a/2), P(t,_, >t,»(a)) =«

Hypothesis testing for « :
We are going to consider the following hypotheses. For any one of the hypothesis we
calculate the same value of t statistic as

_a-a
s(&)

t

The hypotheses and their rejection rules are summarized below.
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Hypothesis Rejection rule.
a Hy: o =q against | Reject Hy if t, >t,_,(a) , P(t,_, >t »(a)) =«
Hy:a>aq
b Hy o =a against | Reject H, if t, <—t, ,(a) , P(t,_, >t, »(a)) =«
Hya<a
C| Hy:a=q against | Reject H, if |ty [>t, s (] 2),
Ha O F ao P(tn_2 > tn_z(a)) =

Example: Consider the above data set. Assume that the following data is appropriate for a
simple linear regression. That is, we have only 5 observations.
X =x ‘ -1 0 1 2 3

Y:y‘S 8 12 15 20
We have calculated the values of the OLS estimators and some related values of the statistics
as
¢ =8.3, s(¢)=0.33166, =37 and s(f)=0.19149.

The SAS codes and the results of the analysis are summarized below.

data a; input X y@@; cards;

-1508112215320

proc reg; model y=x; run;

*hhkhkAhkhkhkhkhkhkhkhhkhkhhhkhhhhkhhhkhhhkhhhkhhhkhhhhirhkhhkhhhrhhhihhkhhhkhhkhkihhiikiiiiik
Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr>F
Model 1 136.90000 136.90000 373.36 0.0003
Error 3 1.10000 0.36667
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Corrected Total 4 138.00000
ek e ek ek e ke e ek e ek e ke ke ke ke ek ke ek
Root MSE 0.60553 R-Square 0.9920
Dependent Mean ~ 12.00000 AdjR-Sq 0.9894
Coeff Var 5.04608
ek e ek ek e ke e ek e ek e ke ke ke ke ek ke ek
Parameter Estimates
Parameter  Standard
Variable DF Estimate Error tValue Pr> [t
Intercept 1 8.30000 0.33166  25.03  0.0001

X 1 3.70000 0.19149 19.32 0.0003

SAS Codes and the results of the analysis

Tests for slope B
a) Suppose we want to test the null hypothesis H,: =3 against H, : > 3at 5% level.

The value of the test statistic and the critical value are found as

t _p-3 37-3
" s(B) 0.19149

~3.655 and P(t; > t,(0.05)) = 0.05 = t,(0.05) = 2.353

and since t,, =3.655 > 2.353 =1,(0.05)) we reject the null hypothesis at 5% level.

Power:Tthe power of the test is always the probability of rejecting the null hypothesis.

Therefore, the power function

Power = P(reject H,) = Py L% > 2.353J =Py (% > 2.353)
S S

= P£t3 > 2.353— ﬂi?’}
s(B)

and therefore the ampirical power (at the calculated value g =3.7) is

3.7-3
0.19149

Power = P(tS >2.353— ) = P(t, > -1.3025) = 0.858
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b) Now, we want to test the null hypothesis of H,: g =4 against the alternative H, : <4
at 5% level. We are going to use the same critical value (t;(0.05) = 2.353) and the value of the
test statistic is

t, = pod_31-% . 567,
s(f) 0.19149

As a conclution, we are going to reject Hy : =4 if t,, <—1t3(0.05)) but since
t, =—-1.567 > —2.353 = —t;(0.05))
we fail to reject the null hypothesis H, : f =4 at 5% level.
c) Finally we want to test the null hypothesis of H, : # =0 against the alternative H, : =0
at 5% level. Now, the value of the test statistic

_ ﬁ — 3.7 ~
s(f) 0.19149

t

and the critical value is P(t; > t;(0.025)) = 0.025 = t;(0.025) = 3.182 (« =0.05 we look at
for a/2) .
As a conclusion we are going to reject the null if |t |>t,_,(«/2) and since
t,|=19.32>3.182 =t _,(a/2)

we reject the null hypothesis at 5% level.

Tests for intercept «

a) Let us try to test the null hypothesis of Hy:a =8 against H, :a #8 at 5% level. the

value of the test statistics is
a-8 83-8

== =~ (0.9045
s(a) 0.33166

t

and the critical value (for 2-sided case) is P(t; > t;(0.025)) = 0.025 = t5(0.025) = 3.182. Since,
|t,|=0.9045<3.182 =t ,(a/2)
we fail to reject the null hypothesis at 5% level.
b) If we wanted to test Hy:a =7 against H,:a >7 at 5% level, the value of the test

statistic is
_Ga-7_83-T7 _
s(4) 0.33166

h
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and we reject the null hypothesis if t,>t, ,(a). For a=0.05 the critical value
t3(0.05) = 2.353. Since, t, =3.92>2.353=1,(0.05) we reject Hy:a =7 at 5% level against
the alternative of H, :ax > 7.

Power: Tthe power of the test is the probability of rejecting the null hypothesis. Therefore,

the power function

Power = P(rejectH,) = P, (a(_—)? > 2.353] =P, [LW > 2.353}
s(d

; s()

_p|t,>2353-2=" ],
s(a)

Thus the ampirical power (at the calculated value o =8.3) is

8.3-7
0.33166

Power = P(tg > 2.353— J = P(t3 > —1.5667) =0.892.

Confidence Intervals:

Confidence intervals for the parameters are very similar to the confidence intervals for the

normal means which we have already studied. The confidence intervals for « and S are
(1- «)100% confidence interval for  is a £ s(a)t,_,(a/2)

and
(1—a)100% confidence interval for g is ﬁis(,@)tn_z(aIZ).

Example: We consider the data set given in the previous example and try to write 95%

confidence intervals for the parameters « and £ . In the above discussion, we have calculated
¢ =8.3, (&) =0.33166 , 3=3.7 and () =0.19149

If we want to write a 95% confidence interval a =0.05 and from P(t; > t;(0.025)) = 0.025 we

get the critical value from the t table as t;(0.025) =3.182. Now we are ready to write 95%

confidence intervals for the regression parameters as:

e 95% confidence interval for « is a £ s(a)t,_,(a/?2)

8.3+ (0.33166)(3.182) or (7.245,9.355)

e 95% confidence interval for g is S+s(B)t, ,(a!2)
3.7+(0.19149)(3.182) or (3.091,4.309) .
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Example: In the above example we had only 5 observations and therefore some of the
statistical inferences may not be significant. To summarize the regression concept we consider

the following data set (now we have n =40 observations).

X[y [ x|y | x|y | x|y |x| vy |x|y |x|y |[x]y

6 (146| 9 (17012 |205| 8 [163| 2 |11.0|11|19.2|13|21.7| 11 | 193

5 134| 8 |165|10 (18515234 | 7 |159|13|21.7|11|19.1| 14 | 223

11197 8 |16.7| 4 |120|11|191| 11196 5 |165|11 194 | 16 | 241

1018813 |21.1|12|205| 5 |134| 9 |170|10 (182 |10 |185| 17 | 251

15237 7 |158| 7 |151| 9 |173| 8 |169| 9 |180| 6 |16.7| 20 | 27.8

A scatter plot of Y values against X ’s are given below figure. As it is seen from the scatter
plot, there seems to be a linear relationship between Y ’s and X ’s. Therefore, it is reasonable to
consider a simple linear regression equation between these two variables as

Yi=Fy+ 5 %+6 ,1=12,..,40.

) 30 o
. “0
i 20 w”
. &
> o 10 **
f. O T T T T 1
0 5 10 15 20 25
Scatter plot of Y values against X’s
Based on the data, we calculate
40 40 2
> x =399 , X,=9.975 , Y (x —X,)? =546.975,
i=1 i=1
40 40 2 40
>y =741.4, y,=18.535, >'(y;—V,) =486.991, D> %Y =7903.7.
i=1 i=1 i=1

Using these values, we calculate the values of the OLS estimators as

40 .
2 %Y —NX, Y,
=1

5 _ 7903.7 — 40(9.975)(18.535)
= -

546.975

=0.929174093 = 0.92917

40 o
Z(Xi - Xn)
i=1

and
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By =V, — B, X, =18.535—0.929174093(9.975) = 9.266488422 = 9.26649

and the fitted regression line is

Y, =9.26649 +0.92917x, , i =1.2,...,40.

In order to construct the ANOVA table, from the fitted regression equation, we calculate the

predicted values and the residual. The sum of squares are calculated as,
40 40 40

SST =3 (y; - y,,)? =486.991 , SSR =Y (J; —y,)> =472.2388 and SSE = > &% =14.7522
|=1 |=1 |:1

and thus the ANOVA table constructed as foloows.
SoV d.f SS MS F

Regression | 1 472.2388 | 472.2388 | 1216.43

Error 38 14.7522 | 0.38822

Total 39 | 486.9910

From the ANOVA table the value of R? = SSR/ SST = 472.2388/ 486.991=0.9697 which
means that more than 96% of all variability in Y is explained by the model (or X ’s). The other
results of the regression analysis incluging the predicted values and the residuall are calculated

by using the SAS codes given below.

data a; input X y@@; cards;

6146 917.01220.5 816.3 211.01119.21321.71119.3
5134 8165101851523.4 71591321.71119.11422.3
1119.7 816.7 412.01119.11119.6 51651119416 24.1
1018.81321.11220.5 513.4 917.01018.21018.51725.1
1523.7 7158 7151 917.3 816.9 918.0 616.7 20 27.8
proc reg; model y=x;

output out=out predicted=yhat residual=ehat;

proc print data=out; var x y yhat ehat;

run;
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KAEKKEAEKKEAKXEAAXKAARXAIARAIAAAIARAAIAAAAAAAAAAAAAAAAAAAIAAAIAAAIAAAIAAArAhihhiiiix

Analysis of Variance

Sum of Mean
Source DE Squares  Square F Value Pr>F
Model 1 472.23880 472.23880 1216.43 <.0001
Error 38 14.75220 0.38822

Corrected Total 39 486.99100
AEEEEEAAEEAAETEAAETEAAEIETEAAETAAETEAAAEITAAETEAAAEITAAEITAAAEITAAREITAAAAAAkEIAAAkAkAA)hAhAkkhkhkkkhkhk
Root MSE 0.62307 R-Square 0.9697
Dependent Mean  18.53500 AdjR-Sg 0.9689
Coeff Var 3.36158
EEEEAAXIAIAXAEAAXAAAXAAAXAAAAAAAAIAAAAAAAAAXAAAAAAAAIAAAAAkAIAAAAhAAhiixhkhidxhiixhikx
Parameter Estimates
Parameter Standard

Variable DF Estimate Error tValue Pr > |t

Intercept 1  9.26649 0.28342 32.70 <.0001

X 1 092917 0.02664 34.88 <.0001

SAS Codes, ANOVA table and Parameter estimates

Some statistical Inferences about the parameters:

From the results of SAS codes in the above we have
/3, =0.92917, 3, =9.26649, s(/3,) =0.02664 and s(/,) = 0.28342

and from the t table,
t15(0.05) =1.6859 and t;5(0.025) = 2.0244

where P(tsg > t35(0.05)) =0.05 and P(tsg > t55(0.025)) = 0.025.
If we want to test the null hypothesis H,: 5, =0.9 against H,: 3, >0.9 at 5% level the

value of the test statistic is
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A

, - £i=09_092017-08 (o
s(4) 0.02664

As a conclusion we reject the null hypothesis if t, > t55(0.05) and since

t, =1.095 <1.6859 = t;4(0.05)
we fail to reject the null hypothesis H : 5, =0.9 at 5% level.

We can also write confidence interval for the slope parameter g, . A 95% confidence interval
for the slope (with rounding) is

B £ 5(3)t:5(0.025) or 0.929 + (0.02664) (2.0244) or 0.929 +0.054 or (0.875,0.983).
Now, let us test the null hypothesis of H : £, =8.5 against H, : £, > 8.5 at 5% level the value
of the test statistic is

A

, ~fo-85_926-85
s(f,)  0.28342

As a conclusion we reject the null hypothesis if t, > t55(0.05) and since

t, = 2.68 >1.6859 = t34(0.05)
we reject the null hypothesis H, : 5, =8.5 at 5% level.

We can also write confidence interval for the slope parameter £,. A 95% confidence interval
for the intercept term (with rounding) is

B £5(,)t:5(0.025) or 9.26 + (0.28342) (2.0244) or 9.26 +0.574 or (8.686,9.834) .

Assumptions:
In order to say that the model

Yi=fy+ L %+g ,1=12,..,40
is a regression model and to do any statistical inference about the parameters, we assumed that
the error terms will be independent and identically distributed random variables. We usually
use the residuals to check these assumptions. As we remember, we the residuals are orthogolal
to the explonatory observations and to the predicted values (sum of the products is zero).
Moreover, the sum of the residuals is also zero. That is, any pattern in these plots indicates a
violotion of the assumtions. That is, we need to look at plot of residuals versus x’s, residuals
versus ¥ ’s and residuals versus observations . If we see any kind of pattern we need to make
some transformation to verify the assumtion. Moreover, in order to do any statistical inferences

about the parameters we need the normality assumption of the error terms. There are many ways
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to check the normality assumptions (Kolmogorov-Simirnov, Shapiro-Wilk, Cramer-von Mises,
Anderson-Darling tests, and some plots like PP-plot, QQ plot and normal probability plot, Box-
Cox plot, etc.) but here we are going to look at the normal probability plot. If we observe a
linearity in the normal probability plot, we can conclude that the error terms are normally
distributed. The residuals and the predicted values are obtained from the fitted regression line

and given in the following table.

Obs x 'y yhat ehat
1 6 146 14.8415 -0.24153
2 9 170 17.6291 -0.62906
3 12 205 204166 0.08342
4 8 163 16.6999 -0.39988
5 2 11.0 11.1248 -0.12484
6 11 19.2 19.4874 -0.28740
7 13 21.7 21.3458 0.35425
8 11 19.3 19.4874 -0.18740
9 5 134 139124 -0.51236
10 8 16,5 16.6999 -0.19988
11 10 185 18.5582 -0.05823
12 15 234 23.2041 0.19590
13 7 159 15.7707 0.12929
14 13 21.7 21.3458 0.35425
15 11 19.1 19.4874 -0.38740
16 14 223 22.2749 0.02507
17 11 19.7 19.4874 0.21260
18 8 16.7 16.6999 0.00012
19 4 120 129832 -0.98318

20 11 19.1 19.4874 -0.38740

26



21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

11
5
11
16
10
13

12

10
10
17

15

6

19.6
16.5
194
24.1
18.8
21.1
20.5
13.4
17.0
18.2
185
25.1
23.7
15.8
15.1
17.3
16.9
18.0

16.7

19.4874
13.9124

19.4874
24.1333
18.5582
21.3458
20.4166
13.9124
17.6291

18.5582
18.5582
25.0624
23.2041
15.7707

15.7707

17.6291

16.6999

17.6291

14.8415

20 27.8 27.8500

0.11260
2.58764
-0.08740
-0.03327

0.24177
-0.24575

0.08342

-0.51236

-0.62906
-0.35823
-0.05823

0.03755

0.49590

0.02929
-0.67071
-0.32906
0.20012
0.37094

1.85847

-0.04997

Predicted values (yhat) and residuals (ehat)

In the following residual plots indicate that the assumptions of the regression equation are
valid. As we see from the plot of residuals against the x’s, §;s and i’s no pattern (linear,
parabolic, etc.) appears. Moreover, in the last plot ( & versus é_,) again no pattern appears.

This plot indicates that there is no first order autocorrecation in the error term. We may also

check some other order of autocorrelation (plotting é; against for example é_, for the second
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order of autocorrelation). There is also test for checking autocorrelations (Durbin-Watson test)

but we are not going to investigate here.

Residuals versus X’s (€; vs. X;) Residuals versus predicted values €, vs. ¥,
)
Residuals versus observations (€ vs. i ) Plot of € versus €_;

Checking for Normality:

One of the main assumption in any statistical inference is the normality of the data. As it is
mentioned above, there are many ways to look at the normality. In the following, we are going

to look at the normal probability plot of the residuals.

Tests for Normality

Test --Statistic---  ----- p Value------
Shapiro-Wilk W 0980542 Pr<W 0.7367
Kolmogorov-Smirnov. D  0.096539 Pr>D >0.1500
Cramer-von Mises ~ W-Sq 0.037226 Pr>W-Sq >0.2500

Anderson-Darling  A-Sq 0.23493 Pr> A-Sq >0.2500

B R R R R R R R R R T P R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R S S R R
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Normal Probability Plot
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Normality tests and the Normal Probability Plot

If we observe a linearity in the normal probability plot, we can assume the normality of the
error term. In the following, the normal probability plot and some results of the normality test
have been run and given in the above table. A linearity is obvious in the normal probability plot
and therefore it is reasonable to assume the normality of the error terms in the regression

equation.
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