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WEEK 13 

 

11. Simple Linear Regression 

 

Let X  and Y  be two random variables with join probability (or probability density) 

function ( , )f x y  and the marginal probability (or probability density) functions ( )Xf x  and 

( )Yf y  respectively. From the joint probability function we can find the conditional probability 

(or probability density) function of Y  given X x  as 
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we can also calculate the conditional expectation of Y  given X x  as 
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 Obviously, this conditional expectation is a function of x  , that is ( | ) ( )E Y X x h x  . This 

conditional expectation is known as the regression of the random variable Y  on X .  If the 

function h  is a linear function of x  then the regression is called a linear regression, otherwise 

it is a non-linear regression of Y  on x . In this class we will consider the case a linear regression. 

That is,  

     ( | ) ( )E Y X x h x x     . 

 Moreover, let 1 2( , , ,..., )pY X X X  be the random variables with joint probability (or 

probability density) function 
1 2, , ,..., 1 2( , , ,..., )

pY X X X pf y x x x . In a similar way, we can find the 

conditional probability (or probability density) function of Y  given  

1 1 2 2, ,..., p pX x X x X x    as 
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( , , ,..., )
( | , ,..., )

( , ,..., )

p

p p

p

Y X X X p

Y X x X x X x p
X X X p

f y x x x
f y x x x

f x x x
      

where 
1 2, ,..., 1 2( , ,..., ) 0

pX X X pf x x x  . And in a similar way, we can calculate the conditional 

expectation of Y  given 1 1 2 2, ,..., p pX x X x X x    as 

 1 1 2 2 1 2( | , ,..., ) ( , ,..., )p p pE Y X x X x X x h x x x    . 
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 This conditional expectation is known as multiple regression of Y  on 1 2, ,..., pX X X . As it 

is obviously seen, this conditional expectation is a function of 1 2, ,..., px x x , namely, 

1 2( , ,..., )ph x x x . If 1 2( , ,..., )ph x x x  is a linear function of x ’s then it is a multiple linear 

regression of Y  on the variables 1 2, ,..., px x x  namely, if 

 1 2 0 1 1 2 2( , ,..., ) ...p p ph x x x x x x         then it is multiple linear regression of Y  on 

the variables 1 2, ,..., px x x ,  otherwise it is a non-linear regression. For the case 1p   the linear 

regression is named as “simple” linear regression. In this class, we are going to investigate the 

simple linear regression.  

 The main goal in the linear regression is to estimate the function h . In the real life, we fixed 

the value of x  and measure the value of Y . As it is clear, it is possible that we can observe 

different values for Y  at the same value of x ’s. That is, we consider a function 

  , 1,2,...,i i iY x e i n             (1) 

and we say that it is a regression equation if 

 ie ’s are independent and identically distributed random variables such that ( ) 0iE e   

and  
2( )iVar e   

 ix ’s are fixed in the sense that they are not random. 

 Moreover, in order to make statistical inference we also assume the normality of ie ’s. That 

is, in order to say that the equation in (1) 

 
2~ . . (0, )ie i i d N   

 ix ’s are fixed in the sense that they are not random. 

 Note that if 
2~ . . (0, )ie i i d N   then 

  ( ) ( ) ( )i i i i i iE Y E x e x E e x               

and  

  
2( ) ( ) ( )i i i iVar Y Var x e Var e        

and therefore, iY ’s are independent (not identically) normally distributed random variables. 

That is,    

  
2~ ( , )i iY N x   . 

 Consider the simple linear regression equation given in (1) 

  , 1,2,...,i i iY x e i n     . 
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Here, 

 iY ’s are the dependent variables (dependency means that they are function of x ’s). 

Actually they are independent random variables. 

 ix ’s are independent variables (or explonatory variables which are not random) 

 ie ’s are the error terms ( they are independent normally distributed random variables 

such that ( ) 0iE e  , 
2( )iVar e  , or simply 

2~ . . (0, )ie i i d N  ) 

   and    are the parameters to be estimated. Actually there is another parameter to be 

estimated which is the variance of the error term, 
2 . 

var. exp var.

, 1,2,...,i i i

dependent lonatory error termparameters i

Y x e i n      

 Consider two variables X  and Y . If there is a functional relationship (e.g. ( )Y f X ) 

between these variables it is a deterministic relationship (shown in the following figure (a)). 

For example, if there is a relationship like 2 3Y X  , we observe 5Y   for 1X    and 3Y   

for 0X  . However, in the reality, it is possibe that we can observe 4.8Y   for 1X   and 

3.2Y   for 0X  . Moreover, if we repart the experiment at the same conditions, it is possible 

that we can observe 5.1Y   for 1X   and 2.7Y   for 0.X   That is there is a stochastic 

relationship between these two random variable (see the following figure (b) below). .  

 
 

Figure. Graph of 2 3y x   line 

 

 We estimate the parameters   and   by minimizing error sum of squares. Note that  from 

the regression equation the error term can be written as i i ie Y x     and therefore error 

sum of squares can be written as 

  2 2

1 1

( , ) ( )
n n

i i i
i i

Q e Y x   
 

     .        (2) 
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 In order to minimize this sum of squares, we take the first derivatives and equate to zero. 

The solutions (say ̂  and ̂ ) are either a minimum or a maximum. To make sure that they are 

minimum we need to look at the second derivatives. If the second derivatives at these solutions 

are positive then they are minimum (we are not going to look at the second derivatives here and 

assume that they are minimum).  The derivatives are; 

 
1

1

( , )
02 ( )

( , )
2 ( ) 0

n

i i
i

n

i i i
i

Q
Y x

Q
x Y x

 
 



 
 







 
        

          





  

and from these equations we have the following equations: 

 
1 1 1

2

1 1 1 1

2 ( ) 0
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i i i i
i i i

n n n n

i i i i i i i
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That is, we have the following equations (called NORMAL EQUATIONS): 

  
1 1

2

1 1 1

.

n n

i i
i i

n n n

i i i i
i i i

Y n x

x Y x x

 

 

 

  

 

 

 

  

        (3) 

 Note that these solutions are obtained by minimizing error sum of squares. And therefore 

these estimators are also known as “ordinary least square” (OLS) estimators. Moreover, the 

estimator ̂  is the “intercept term” and ̂  is the “slope”  of the regression equation. The 

solutions (say ̂  and ̂ ) to these equations are 

  1

2

1

( )( )
ˆ

( )

n

i n i n
xyi

n
xx

i n
i

x x Y Y
S

S
x x

 



 

 







 and ˆˆ
n nY x    

where 

  
1

1 n

n i
i

Y Y
n 

  , 
1

1 n

n i
i

x x
n 

  , 2

1

( )
n

xx i n
i

S x x


  and 
1

( )( )
n

xy i n i n
i

S x x Y Y


    

and since 
1

( ) 0
n

i n
i

x x


   the sum in the denominator in ̂  can be written as 

 
1 1

( )( ) ( )
n n

i n i n i n i
i i

x x Y Y x x Y
 

     .  
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and therefore the estimator of   can be written as  

 1 1

2 1 1

1

( )( ) ( )
( )ˆ

( )

n n

i n i n i n i n n
xy i i i n

i i in
i ixx xx xx

i n
i

x x Y Y x x Y
S x x

Y wY
S S S

x x

  

 



  
 

     
 

 
 



. 

 That is, ̂  is a linear combination of iY ’s.  Similarly, the estimator of   is also linear 

combination of iY ’s because 

1 1 1 1 1

( )1 1 1ˆˆ
n n n n n

n i n
n n i n i i n i i i i i

i i i i ixx

x x x
Y x Y x wY x w Y Y s Y

n n n S
 

    

  
          

   
     . 

 That is, the OLS estimators of   and   are linear combinations of iY ’s.  In other words, 

they are linear in iY ’s.  

In a summary, 

1

ˆ
n

i i
i

wY


  

  

 
1

ˆ
n

i i
i

s Y


  

2

1

( ) ( )

( )

i n i n
i n

xx
j n

j

x x x x
w

S
x x



 
 



  

2

1

( ) ( )1 1

( )

n i n n i n
i n

xx
j n

j

x x x x x x
s

n n S
x x



 
   



. 

Notes: 

 a) Notes on the linear estimator of 
1

ˆ
n

i i
i

wY


  

 
1 1

1
( ) 0

n n

i i n
i ixx

w x x
S 

     

 

 
2 2

2 2
21 1

1

1 1 1
( )

( )

n n
xx

i i n n
i i xxxx xx

i n
i

S
w x x

SS S
x x 



    



 


 

 

 
1 1 1

2 2

1 1 1

1 1
( ) ( )( )

1 1
( ) ( ) ( ) 1

n n n

i i i i n i n n i n
i i ixx xx

n n n
n xx

i n i n i n
i i ixx xx xx xx

x w x x x x x x x x
S S

x S
x x x x x x

S S S S

  

  

     

       

  

  

 

AND 

 b) ) Notes on the linear estimator of ˆˆ
n nY x    

 
1 1 1

( )1
1 ( ) 1

n n n
n i n n

i i n
i i ixx xx

x x x x
s x x

n S S  
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 Statistical Properties of OLS Estimators: 

 a) The OLS estimator of    

 1 1

2 2 1

1 1

( )( ) ( )( )
ˆ

( ) ( )

n n

i n i n i n i n n
xyi i

i in n
ixx

i n i n
i i

x x Y Y x x Y Y
S

wY
S

x x x x

  



 

   

   

 

 


 

 

 ̂  is an unbiased estimator of    because 

1 1 1 1

ˆ( ) ( ) ( ) 0 (1)
n n n n

i i i i i i i
i i i i

E w E Y w x w x w      
   

           . 

 
2 2

2
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ˆ( )

( )
n

xx
i n

i

Var
S
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 because 

2 2
2 2 2

21 1 1

1

ˆ( ) ( ) .

( )

n n n

i i i i i n
i i i xx

i n
i

Var Var wY w Var Y w
S

x x

 
 

  



 
     

  

  


 

 If ie ’s are normally distributed random variables (
2~ . . (0, )ie i i d N  ) then iY ’s are 

independent and normally distributed random variables and therefore any linear 

combinations or independent normally distributed random variables is also normally 

distributed. Therefore, 
2ˆ ~ ( , / )xxN S   .  

 

b) The OLS estimator of    
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1 1

( )1ˆˆ
n n

n i n
n n i i i

i ixx

x x x
Y x Y s Y

n S
 

 

 
     

 
   

 ̂  is an unbiased estimator of   because 

1 1 1 1

ˆ( ) ( ) ( ) (0)
n n n n

i i i i i i i
i i i i

E s E Y s x s x s       
   

           . 

  
2

2 1
ˆ( ) n

xx

x
Var

n S
 

 
  

 

 because 

2
2 2 2 2

1 1

1
ˆ( ) ( )

n n
n

i i i
i i xx

x
Var s Var Y s

n S
  

 

 
    

 
  . 

 If ie ’s are normally distributed random variables (
2~ . . (0, )ie i i d N  ) then iY ’s are 

independent and normally distributed random variables and therefore any linear 

combinations or independent normally distributed random variables is also normally 

distributed. Therefore, ˆ ˆ~ ( , ( ))N Var   .  

Note (IMPORTANT) : As we have shown above, the OLS estimators of   and   are 

unbiased and linear combinations of iY ’s. It is possible that we can find many linear and 

unbiased estimators. However, these OLS estimators have the smallest variance among all 

linear and unbiased estimators of   and  . That is, the OLS estimators ̂  and ̂  are the Best 

Linear Unbiased Estimators (BLUE) of    and  .    

 The value of OLS estimator of   can also be written as 

  1 1

2 2 2

1 1

( )( )
ˆ

( )

n n

i n i n i i n n
i i

n n

i n i n
i i

x x y y x y n x y

x x x n x

  

 

  

 

 

 

 

. 

After we calculate the values of the OLS estimaor, we write the “fitted regression line” as 

  ˆˆˆ , 1,2,...,i iy x i n            (4) 

and the ”residuals” are calculated as ˆ ˆ , 1,2,...,i i ie y y i n   .  

 

 Example: Assume that the following data is appropriate for a simple linear regression. That 

is, we have only 5  observations.  

X x  1  0  1  2  3  

Y y  5  8  12  15  20  

 

The scatter plot and some of calculated values are given below. 
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5n   , 1nx   , 12ny    

5

1

5i
i

x


  , 
5

2

1

15i
i

x


 , 
5

1

60i
i

y


 ,  

5

1

97i i
i

x y


 , 
5

2

1

858i
i

y


  

Now, we can calculate the values of the OLS estimators ̂  and ̂  as 

1

2
2 2

1

97 5(1)(12) 37ˆ 3.7
1015 5(1)

n

i i n n
i

n

i n
i

x y n x y

x n x

 






   








 

and   

ˆˆ 12 (3.7) (1) 8.3n ny x       

and thus the fitted regression line is 

 ˆˆ ˆ 8.3 3.7 , 1,2,...,i i iY x x i n       

and the residuals are ˆ ˆ , 1,2,...,i i ie y y i n   . The calculated fitted values (or predicted values) 

and the residuals are calculated and given below. 

1 1 1ˆ ˆ8.3 3.7 8.3 3.7( 1) 4.6y x y         

2 2 1ˆ ˆ8.3 3.7 8.3 3.7(0) 8.3y x y       

3 3 1ˆ ˆ8.3 3.7 8.3 3.7(1) 12.0y x y       

4 4 1ˆ ˆ8.3 3.7 8.3 3.7(2) 15.7y x y       

5 5 1ˆ ˆ8.3 3.7 8.3 3.7(3) 19.4y x y       

1 1 1ˆ ˆ 5 4.6 0.4e y y       

2 2 2ˆ ˆ 8 8.3 0.3e y y       

3 3 3ˆ ˆ 12 12 0.0e y y      

4 4 4ˆ ˆ 17 17.7 0.7e y y       

5 5 5ˆ ˆ 20 19.4 0.6e y y      

Predicted values and the residuals 

 We put all the observed, predicted and the residuals in the following table: 

i  x  2x  
y  2y  xy  ŷ  2ŷ  ê  2ê  ˆxe  ˆ ˆe y  

1 -1 1 5 25 -5 4.6 21.16 0.4 0.16 -

0.4 

1.84 

0

5

10

15

20

25

-2 0 2 4
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2 0 0 8 64 0 8.3 68.89 -

0.3 

0.09 0 -2.49 

3 1 1 12 144 12 12 144.0 0 0 0 0 

4 2 4 15 225 30 15.7 246.49 -

0.7 

0.49 -

1.4 

-

10.99 

5 3 9 20 400 60 19.4 376.36 0.6 0.36 1.8 11.64 

  5 15 60 858 97 60 856.9 0.0 1.1 0.0 0.0 

 

  When we check the table, we have the folloing interesting results: 

 
1 1

ˆ
n n

i i
i i

y y
 

   ,  
1

ˆ 0
n

î
i

e


  ,   
1

ˆ 0
n

i î
i

x e


 ,  
1

ˆ ˆ 0
n

i î
i

y e


 , 2 2 2

1 1 1

ˆ ˆ
n n n

i i i
i i i

y y e
  

    . 

 Actually, for any regression equation including an intercept term, the above equalities are 

always valid. That’s why we use the residual plots in order to check the assumptions. However, 

the the regression equatio ndoes not include and intercept term ( 0  ) the above equalities 

may not satisfy (e.g. the sum of the residual may not be zero, etc.) . In the following, we show 

that the above equalities are actually true in general.  

 Consider the simple linear regression line given in (1) and the normal equations given in (3). 

The simple linear regression equation 

 , 1,2,...,i i iY x e i n      

and the normal equations 

2

1 1 1 1 1

ˆ ˆˆ ˆ,
n n n n n

i i i i i i
i i i i i

Y n x x Y x x   
    

        . 

 
1 1 1 1 1 1 1

ˆ ˆˆ ˆˆ ˆ( ) ( ) 0
n n n n n n n

î i i i i i i i i
i i i i i i i

e y y y x y n x y y   
      

 
           

 
        

 
1 1 1 1 1 1

ˆ ˆ ˆ ˆ0 ( )
n n n n n n

î i i i i i i
i i i i i i

e y y y y y y
     

             

 

2

1 1 1

2

1 1 1 1 1

ˆˆˆ ˆ( ) ( )

ˆˆ 0

n n n

i î i i i i i i i
i i i

n n n n n

i i i i i i i i
i i i i i

x e x y y x y x x

x y x x x y x y

 

 

  

    

    

 
      

 

  

    

 

 
1 1 1 1

ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ( ) 0 0 0
n n n n

i î i i i i i
i i i i

y e e x e x e   
   

          . 
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 ANOVA Table: From the above example, we have also observe that  

  2 2 2

1 1 1

ˆ ˆ
n n n

i i i
i i i

y y e
  

     and 
1 1

ˆ
n n

i i
i i

y y
 

  . 

 The second equality also implies that ˆ
n ny y . Using these equalities, we define the folloing 

sum of sqaures   

 2 2 2

1 1

( )
n n

i n i n
i i

SST y y y ny
 

        ,  2 2 2

1 1

ˆ ˆ( )
n n

i n i n
i i

SSR y y y ny
 

      and 2

1

ˆ
n

i
i

SSE e


 . 

 Here, SST  stands for “total sum of squares”, SSR  stands for “regression  sum of squares” 

and SSE  for “error sum of squares”. Now, we are ready to construct the ANOVA table. In the 

following, 

.d f  is the “number of degrees of freedom”, SoV  is “source of variation”, MS  is the “mean 

squares” and F  is the “value of F  statistic”. The values MS ’s are calculated by the 

corresponding SS ’s divided by its degrees of freedoms and the value of F  statistic is the ration 

of MSR and MSE  (mean square regression devided by mean square errors)   

   

SoV  .d f  SS  MS  F  

Regression 1  SSR  MSR  F  

Error 2n   SSE  MSE   

Total 1n   SST    

  

 Example: Consider the previous example. We have calculated from the table above ( 5n 

) as  

1

60
n

i
i

y


  , 2

1

858
n

i
i

y


   , 2

1

ˆ 856.9
n

i
i

y


  and 2

1

1.1
n

i
i

e


 . 

Therefore, 

 2 2 2 2

1 1

( ) 858 5(12) 858 5(144) 138
n n

i n i n
i i

SST y y y ny
 

            

 2 2 2 2

1 1

ˆ ˆ( ) 856.9 5(12) 856.9 5(144) 136.9
n n

i n i n
i i

SSR y y y ny
 

           and  2

1

1.1
n

i
i

e




.   

 Thus the ANOVA table  is constructed as follows. 

SoV  .d f  SS  MS  F  
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Regression 1  136.9  136.9  373.36  

Error 3  1.1 0.3667   

Total 4  138.0    

  

 From the ANOVA table, the value of MSE  is an unbiased estimate of 
2 ( 2( )E MSE  ) 

and the ratio 

   2 SSR
R

SST
               (5) 

is the percentage of the variability explained by the model. That is, the percentage of the 

variability in the dependent variable Y  explained by the explanatory variable x . The larger 

value of 2R  indicates that a better model ( x ’s explain Y ’s better). In the above example, the 

OLS estimate of 
2  is 

2ˆ 0.3667MSE     and  

 2 136.9
0.992

138

MSR
R

MSE
    

which means that more than 99% of all variability in Y ’s are explained by the model (or the 

explanatory variable x ).     

 

 Example: Assume that the folloowing data set is appropriate for a simple linear regression 

equation.     

x y x y x y x y x y x y x y 

16 26.6 15 25.4 21 31.7 20 30.8 25 35.7 19 29.0 18 28.5 

18 28.7 23 33.1 17 27.8 22 32.5 20 30.5 14 24.0 22 32.5 

17 27.1 18 28.3 25 35.4 21 31.1 15 25.4 19 29.3 12 23.0 

17 27.9 21 31.6 19 29.0 18 28.9 21 31.2 23 33.7 15 28.5 

20 30.2 19 30.0 23 33.7 21 31.1 21 31.4 20 30.5 16 28.7 

16 26.7 19 29.9 20 30.6 19 29.3 18 28.9 22 32.2 13 24.0 

16 26.2 21 31.5 15 25.6 20 30.3 20 30.8 13 23.2 15 28.0 

18 28.3 27 37.3 18 28.3 21 31.1 19 29.2 17 27.4 16 32.2 

 

 For this data set, we assume that a simple linear regression equation is appropriate. That is, 

we have 
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, 1,2,...,56i i iY x e i     . 

In order to calculate the values of the OLS estimators, some of the calculated values are given 

below: 

56

1

1054i
i

x


 ,  
56

2

1

20380i
i

x


 , 
56

2

1

( ) 542.214286i n
i

x x


  , 18.824286nx    

 
56

1

1653.8i
i

y


 , 29.5321429ny  , 
56

1

31618.6i i
i

x y


 . 

Therefore (by considering the roundig errors) we have 

 1

2 2

1

31618.6 56(18.82143)(29.53214) 491.722ˆ 0.90688
542.21 542.214

n

i i n n
i

n

i n
i

x y n x y

x n x

 






   







 

and  

ˆˆ 29.532149 (0.90688)(18.8214286) 12.46343n ny x       

and therefore the fitted regression line is, 

 ˆ 12.46 0.907 , 1,2,...,56i iY x i   .   

The plot of the observed values (with “stars”) and the fitted regression line (the straight line) 

is given in the following figure.  

 

The plot of observed values and the fitted regression line 

 

Some other statistical values have been calculated bu running the following SAS codes. 

You can also verify the same results in any statistical package program (or in excel). 

data a; input x y@@; cards;                                                                                                              

16 26.6 15 25.4 21 31.7 20 30.8 25 35.7 19 29.0 18 28.5                                                                                  

18 28.7 23 33.1 17 27.8 22 32.5 20 30.5 14 24.0 22 32.5                                                                                  

17 27.1 18 28.3 25 35.4 21 31.1 15 25.4 19 29.3 12 23.0                                                                                  

17 27.9 21 31.6 19 29.0 18 28.9 21 31.2 23 33.7 15 28.5                                                                                  

y

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

x

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
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20 30.2 19 30.0 23 33.7 21 31.1 21 31.4 20 30.5 16 28.7                                                                                  

16 26.7 19 29.9 20 30.6 19 29.3 18 28.9 22 32.2 13 24.0                                                                                  

16 26.2 21 31.5 15 25.6 20 30.3 20 30.8 13 23.2 15 28.0                                                                                  

18 28.3 27 37.3 18 28.3 21 31.1 19 29.2 17 27.4 16 32.2                                                                                  

;                                                                                                                                        

proc reg; model y=x;                                                                                                                     

output out=out predicted=yhat residual=resid;                                                                                            

proc print data=out; var x y yhat resid;                                                                                                 

run;                                                                                                                                     

SAS Codes to analyze the data 

The output of the above SAS codes is given below. When we investigate the output, we 

observe that almost 90% of all variability in the dependent variable is explained by the model (

x ’s). The parameter estimates are almost the same as we calculated above (rounding error). 

later, we are going to use the same data to make some statistical inferences about the parameters 

(hypothesis testing and confidence intervals). In the following, we also printed out the predicted 

values and the residuals obtained from the model. 

             Obs     x      y       yhat       resid        .                                                                      

               1    16    26.6    26.9735    -0.37346                                                                     

               2    15    25.4    26.0666    -0.66658                                                                     

               3    21    31.7    31.5078     0.19216                                                                     

               4    20    30.8    30.6010     0.19904                                                                     

               5    25    35.7    35.1353     0.56466                                                                     

               6    19    29.0    29.6941    -0.69409                                                                     

               7    18    28.5    28.7872    -0.28721                                                                     

               8    18    28.7    28.7872    -0.08721                                                                     

               9    23    33.1    33.3216    -0.22159                                                                     

              10    17    27.8    27.8803    -0.08033                                                                     
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              11    22    32.5    32.4147     0.08529                                                                     

              12    20    30.5    30.6010    -0.10096                                                                     

              13    14    24.0    25.1597    -1.15970                                                                     

              14    22    32.5    32.4147     0.08529                                                                     

              15    17    27.1    27.8803    -0.78033                                                                     

              16    18    28.3    28.7872    -0.48721                                                                     

              17    25    35.4    35.1353     0.26466                                                                     

              18    21    31.1    31.5078    -0.40784                                                                     

              19    15    25.4    26.0666    -0.66658                                                                     

              20    19    29.3    29.6941    -0.39409                                                                     

              21    12    23.0    23.3459    -0.34595                                                                     

              22    17    27.9    27.8803     0.01967                                                                     

              23    21    31.6    31.5078     0.09216                                                                     

              24    19    29.0    29.6941    -0.69409                                                                     

              25    18    28.9    28.7872     0.11279                                                                     

              26    21    31.2    31.5078    -0.30784                                                                     

              27    23    33.7    33.3216     0.37841                                                                     

              28    15    28.5    26.0666     2.43342                                                                     

              29    20    30.2    30.6010    -0.40096                                                                     

              30    19    30.0    29.6941     0.30591                                                                     

              31    23    33.7    33.3216     0.37841                                                                     

              32    21    31.1    31.5078    -0.40784                                                                     

              33    21    31.4    31.5078    -0.10784                                                                     

              34    20    30.5    30.6010    -0.10096                                                                     

              35    16    28.7    26.9735     1.72654                                                                     

              36    16    26.7    26.9735    -0.27346                                                                     

              37    19    29.9    29.6941     0.20591                                                                     
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              38    20    30.6    30.6010    -0.00096                                                                     

              39    19    29.3    29.6941    -0.39409                                                                     

              40    18    28.9    28.7872     0.11279                                                                     

              41    22    32.2    32.4147    -0.21471                                                                     

              42    13    24.0    24.2528    -0.25283                                                                     

              43    16    26.2    26.9735    -0.77346                                                                     

              44    21    31.5    31.5078    -0.00784                                                                     

              45    15    25.6    26.0666    -0.46658                                                                     

              46    20    30.3    30.6010    -0.30096                                                                     

              47    20    30.8    30.6010     0.19904                                                                     

              48    13    23.2    24.2528    -1.05283                                                                     

              49    15    28.0    26.0666     1.93342                                                                     

              50    18    28.3    28.7872    -0.48721                                                                     

              51    27    37.3    36.9491     0.35090                                                                     

              52    18    28.3    28.7872    -0.48721                                                                     

              53    21    31.1    31.5078    -0.40784                                                                     

              54    19    29.2    29.6941    -0.49409                                                                     

              55    17    27.4    27.8803    -0.48033                                                                     

              56    16    32.2    26.9735     5.22654                                                                                                                                 

The data, observed and predicted values and residuals 

 

the parameter estimates and the results of regression analysis of dependent variable Y  on the 

explanatory (independent variable) variable x  is given below.  

                        Analysis of Variance                              .                                                                                                

                               Sum of           Mean                                                                                     

Source              DF        Squares         Square    F Value    Pr > F                                                                

Model                1      445.93064      445.93064     484.01    <.0001                                                                
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Error               54       49.75150        0.92132                                                                                     

Corrected Total     55      495.68214                                                                                                    

*************************************************************************

**                                                             

            Root MSE              0.95986    R-Square     0.8996                                                                         

            Dependent Mean       29.53214    Adj R-Sq     0.8978                                                                         

            Coeff Var             3.25021                                                                                                

*************************************************************************

**                                                              

                             Parameter Estimates                                                                                         

                         Parameter       Standard                                                                                        

    Variable     DF       Estimate          Error    t Value    Pr > |t|                                                                 

    Intercept     1       12.46343        0.78637      15.85      <.0001                                                                 

    x             1        0.90688        0.04122      22.00      <.0001                                                                 

Estimation results and the ANOVA table 

 

Statistical Inference on the Regression Parameters: 

 Consider the following simple linear regression equation given in (1) 

  , 1,2,...,i i iY x e i n     . 

 Here,   and   are the parameters to be estimated. We estimated these parameters (OLS) 

as 

  1
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and we calculeted their means and the variances as 
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When we assume the normality of the error terms, the OLS estimators ̂  ând ̂  are also 

normally distributed random variables (because they are linear combinations of independent 

normally distributed random variables), namely 
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ˆ ˆ~ ( , ( ))N Var     and ˆ ˆ~ ( , ( ))N Var   . 

These distributional properties imply that 
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Hypothesis testing for   : 

 We are going to consider the following hypotheses. For any one of the hypothesis we 

calculate the same value of t  statistic as 

 0
ˆ

ˆ( )
ht

s

 




 . 

The hypotheses and their rejection rules are summarized below.  

 Hypothesis Rejection rule. 

a 
0 0:H    against 0:aH    Reject 0H   if 2( )h nt t   , 2 2( ( ))n nP t t       

b 
0 0:H    against 0:aH    Reject 0H   if 2( )h nt t    , 2 2( ( ))n nP t t       

c 
0 0:H    against 0:aH    Reject 0H  if 2| | ( / 2)h nt t  , 2 2( ( ))n nP t t      

 

Hypothesis testing for   : 

 We are going to consider the following hypotheses. For any one of the hypothesis we 

calculate the same value of t  statistic as 

 0
ˆ

ˆ( )
ht

s

 




 . 

The hypotheses and their rejection rules are summarized below.  



18 
 

 Hypothesis Rejection rule. 

a 
0 0:H    against 

0:aH    

Reject 0H   if 2( )h nt t   , 2 2( ( ))n nP t t       

b 
0 0:H    against 

0:aH    

Reject 0H   if 2( )h nt t    , 2 2( ( ))n nP t t       

c 
0 0:H    against 

0:aH    

Reject 0H  if 2| | ( / 2)h nt t  , 

2 2( ( ))n nP t t      

 

Example: Consider the above data set. Assume that the following data is appropriate for a 

simple linear regression. That is, we have only 5  observations.  

X x  1  0  1  2  3  

Y y  5  8  12  15  20  

 We have calculated the values of the OLS estimators and some related values of the statistics 

as 

 ˆ 8.3  , ˆ( ) 0.33166s   , ˆ 3.7    and ˆ( ) 0.19149s   .    

The SAS codes and the results of the analysis are summarized below. 

data a; input x y@@; cards;                                                                                                              

-1 5 0 8 1 12 2 15 3 20                                                                                                                  

;                                                                                                                                        

proc reg; model y=x; run;                                                                                                                

*******************************************************************                                                                      

                      Analysis of Variance                                                                                               

                           Sum of      Mean                                                                                              

Source             DF     Squares    Square    F Value    Pr > F                                                                                                                                                                                                                

Model              1   136.90000    136.90000   373.36   0.0003                                                                          

Error              3     1.10000      0.36667                                                                                            
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Corrected Total    4    138.00000                                                                                                        

*******************************************************************                                                                      

            Root MSE              0.60553    R-Square     0.9920                                                                         

            Dependent Mean       12.00000    Adj R-Sq     0.9894                                                                         

            Coeff Var             5.04608                                                                                                

*******************************************************************                                                                      

                      Parameter Estimates                                                                                                

                   Parameter       Standard                                                                                              

 Variable     DF    Estimate          Error    t Value    Pr > |t|                                                                       

 Intercept     1     8.30000        0.33166      25.03      0.0001                                                                       

 x             1     3.70000        0.19149      19.32      0.0003                                                                             

SAS Codes and the results of the analysis 

 

Tests for slope   

 a) Suppose we want to test the null hypothesis 0 : 3H    against : 3aH   at 5% level. 

The value of the test statistic and the critical value are found as 

ˆ 3 3.7 3
3.655

ˆ 0.19149( )
ht

s





 
    and 3 3 3( (0.05)) 0.05 (0.05) 2.353P t t t      

and since 33.655 2.353 (0.05))ht t    we reject the null hypothesis at 5% level. 

     Power:Tthe power of the test is always the probability of rejecting the null hypothesis. 

Therefore, the power function 
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ˆ ˆ3 3
( ) 2.353 2.353

ˆ ˆ( ) ( )

3
2.353

ˆ( )

Power P reject H P P
s s

P t
s

 

   

 





      
          

   

 
   

 

  

and therefore the ampirical power (at the calculated value 3.7  ) is 

   3 3

3.7 3
2.353 1.3025 0.858

0.19149
Power P t P t
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 b) Now, we want to test  the null hypothesis of  0 : 4H    against the alternative : 4aH     

at 5% level. We are going to use the same critical value ( 3(0.05) 2.353t  ) and the value of the 

test statistic is 

  
ˆ 4 3.7 4

1.567
ˆ 0.19149( )

ht
s





 
    . 

 As a conclution, we are going to reject 0 : 4H    if 3(0.05))ht t   but since 

   31.567 2.353 (0.05))ht t       

we fail to reject the null hypothesis 0 : 4H    at 5% level. 

 c) Finally we want to test the null hypothesis of 0 : 0H    against the alternative : 0aH    

at 5% level. Now, the value of the test statistic 

 
ˆ 3.7

19.32
ˆ 0.19149( )

ht
s




    

and the critical value  is 3 3 3( (0.025)) 0.025 (0.025) 3.182P t t t     ( 0.05   we look at 

for / 2 )  .  

 As a conclusion we are going to reject the null if 2| | ( / 2)h nt t   and since 

    2| | 19.32 3.182 ( / 2)h nt t     

we reject the null hypothesis at 5% level.  

  

 Tests for intercept    

a) Let us try to test the null hypothesis of 0 : 8H     against : 8aH    at 5% level. the 

value of the test statistics is 

ˆ 8 8.3 8
0.9045

ˆ( ) 0.33166
ht

s





 
     

and the critical value (for 2-sided case) is 3 3 3( (0.025)) 0.025 (0.025) 3.182P t t t    . Since, 

 2| | 0.9045 3.182 ( / 2)h nt t     

we fail to reject the null hypothesis at 5% level.  

 b) If we wanted to test 0 : 7H    against  : 7aH    at 5% level, the value of the test 

statistic is  

 
ˆ 7 8.3 7

3.92
ˆ( ) 0.33166

ht
s
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and we reject the null hypothesis if 2( )h nt t  . For 0.05   the critical value 

3(0.05) 2.353t  . Since, 33.92 2.353 (0.05)ht t    we reject 0 : 7H    at 5% level against 

the alternative of : 7aH   . 

    Power: Tthe power of the test is the probability of rejecting the null hypothesis. Therefore, 

the power function 

 

 

0

3

ˆ ˆ7 7
( ) 2.353 2.353

ˆ ˆ( ) ( )

7
2.353 .

ˆ( )

Power P reject H P P
s s

P t
s

 

   

 





      
       

   

 
   

 

  

Thus the ampirical power (at the calculated value 8.3  ) is 

   3 3

8.3 7
2.353 1.5667 0.892

0.33166
Power P t P t

 
       

 
.  

 

 Confidence Intervals: 

 Confidence intervals for the parameters are very similar to the confidence intervals for the 

normal means which we have already studied. The confidence intervals for   and   are 

 (1 )100%   confidence interval for   is   2
ˆ ˆ( ) ( / 2)ns t     

and  

 (1 )100%   confidence interval for   is   2
ˆ ˆ( ) ( / 2)ns t   . 

 Example: We consider the data set given in the previous example and try to write 95% 

confidence intervals for the parameters   and  . In the above discussion, we have calculated 

ˆ 8.3  , ˆ( ) 0.33166s    , ˆ 3.7   and ˆ( ) 0.19149s    

If we want to write a 95% confidence interval 0.05   and from 3 3( (0.025)) 0.025P t t   we 

get the critical value from the t  table as 3(0.025) 3.182t  . Now we are ready to write 95% 

confidence intervals for the regression parameters as: 

  95% confidence interval for   is   2
ˆ ˆ( ) ( / 2)ns t     

     8.3 (0.33166)(3.182)   or (7.245,9.355)   

  95% confidence interval for   is   2
ˆ ˆ( ) ( / 2)ns t     

     3.7 (0.19149)(3.182)   or (3.091,4.309) .  
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 Example: In the above example we had only 5 observations and therefore some of the 

statistical inferences may not be significant. To summarize the regression concept we consider 

the following data set (now we have 40n   observations).  

x y x y x y x y x y x y x y x y 

6 14.6 9 17.0 12 20.5 8 16.3 2 11.0 11 19.2 13 21.7 11 19.3 

5 13.4 8 16.5 10 18.5 15 23.4 7 15.9 13 21.7 11 19.1 14 22.3 

11 19.7 8 16.7 4 12.0 11 19.1 11 19.6 5 16.5 11 19.4 16 24.1 

10 18.8 13 21.1 12 20.5 5 13.4 9 17.0 10 18.2 10 18.5 17 25.1 

15 23.7 7 15.8 7 15.1 9 17.3 8 16.9 9 18.0 6 16.7 20 27.8 

 

 A scatter plot of Y  values against x ’s are given below figure. As it is seen from the scatter 

plot, there seems to be a linear relationship between Y ’s and x ’s. Therefore, it is reasonable to 

consider a simple linear regression equation between these two variables as 

  0 1 , 1,2,...,40i i iY x e i     .   

 

 

Scatter plot of Y  values against x ’s 

Based on the data, we calculate  
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 . 

Using these values, we calculate the values of the OLS estimators as  
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 0 1
ˆ ˆ 18.535 0.929174093(9.975) 9.266488422 9.26649n ny x        

and the fitted regression line is 

ˆ 9.26649 0.92917 , 1.2,...,40.i iY x i    

 In order to construct the ANOVA table, from the fitted regression equation, we calculate the 

predicted values and the residual.  The sum of squares are calculated as, 

40
2

1

( ) 486.991i n
i

SST y y


    , 
40

2

1

ˆ( ) 472.2388i n
i

SSR y y


    and 
40

2

1

ˆ 14.7522i
i

SSE e


   

and thus the ANOVA table constructed as foloows. 

SoV  .d f  SS  MS  F  

Regression 1  472.2388  472.2388  1216.43  

Error 38  14.7522  0.38822   

Total 39  486.9910    

 From the ANOVA table the value of 
2 / 472.2388 / 486.991 0.9697R SSR SST    which 

means that more than 96% of all variability in Y  is explained by the model (or x ’s). The other 

results of the regression analysis incluging the predicted values and the residuall are calculated 

by using the SAS codes given below. 

 

data a; input x y@@; cards;                                                                                                              

 6 14.6  9 17.0 12 20.5  8 16.3  2 11.0 11 19.2 13 21.7 11 19.3                                                                          

 5 13.4  8 16.5 10 18.5 15 23.4  7 15.9 13 21.7 11 19.1 14 22.3                                                                          

11 19.7  8 16.7  4 12.0 11 19.1 11 19.6  5 16.5 11 19.4 16 24.1                                                                          

10 18.8 13 21.1 12 20.5  5 13.4  9 17.0 10 18.2 10 18.5 17 25.1                                                                          

15 23.7  7 15.8  7 15.1  9 17.3  8 16.9  9 18.0  6 16.7 20 27.8                                                                          

;                                                                                                                                        

proc reg; model y=x;                                                                                                                     

output out=out predicted=yhat residual=ehat;                                                                                             

proc print data=out; var x y yhat ehat;                                                                                                  

run;                                                                                                                                     
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*******************************************************************                                                                      

                    Analysis of Variance                                                                                                 

                           Sum of         Mean                                                                                           

Source             DF     Squares       Square   F Value   Pr > F                                                                        

Model               1   472.23880    472.23880   1216.43   <.0001                                                                        

Error              38    14.75220      0.38822                                                                                           

Corrected Total    39   486.99100                                                                                                        

*******************************************************************                                                                      

         Root MSE              0.62307    R-Square     0.9697                                                                            

         Dependent Mean       18.53500    Adj R-Sq     0.9689                                                                            

         Coeff Var             3.36158                                                                                                   

*******************************************************************                                                                      

                        Parameter Estimates                                                                                              

                    Parameter     Standard                                                                                               

 Variable     DF     Estimate        Error    t Value    Pr > |t|                                                                        

 Intercept     1      9.26649      0.28342      32.70      <.0001                                                                        

 x             1      0.92917      0.02664      34.88      <.0001                                                                                                                                                                     

SAS Codes, ANOVA table and Parameter estimates 

 

Some statistical Inferences about the parameters: 

From the results of SAS codes in the above we have 

1
ˆ 0.92917  , 0

ˆ 9.26649  , 1
ˆ( ) 0.02664s    and 0

ˆ( ) 0.28342s    

and from the t  table, 

    38(0.05) 1.6859t   and 38(0.025) 2.0244t    

where 38 38( (0.05)) 0.05P t t    and 38 38( (0.025)) 0.025P t t  .  

 If we want to test the null hypothesis 0 1: 0.9H    against  1: 0.9aH    at 5% level the 

value of the test statistic is 



25 
 

  1

1

ˆ 0.9 0.92917 0.9
1.095

ˆ 0.02664( )
ht

s





 
   .  

 As a conclusion we reject the null hypothesis if 38(0.05)ht t  and since 

   381.095 1.6859 (0.05)ht t    

we fail to reject the null hypothesis 0 1: 0.9H    at 5% level.   

 We can also write confidence interval for the slope parameter 1 . A 95% confidence interval 

for the slope (with rounding) is  

 1 1 38
ˆ ˆ( ) (0.025)s t   or  0.929 (0.02664)(2.0244)  or 0.929 0.054 or (0.875,0.983) .  

Now, let us test the null hypothesis of 0 0: 8.5H    against  0: 8.5aH    at 5% level the value 

of the test statistic is 

  0

0

ˆ 8.5 9.26 8.5
2.68

ˆ 0.28342( )
ht

s





 
   . 

 As a conclusion we reject the null hypothesis if 38(0.05)ht t  and since 

   382.68 1.6859 (0.05)ht t    

we reject the null hypothesis 0 0: 8.5H    at 5% level.   

 We can also write confidence interval for the slope parameter 0 . A 95% confidence interval 

for the intercept term (with rounding) is  

 0 0 38
ˆ ˆ( ) (0.025)s t   or  9.26 (0.28342)(2.0244)  or 9.26 0.574 or (8.686,9.834) .  

  

 Assumptions: 

 In order to say that the model  

  0 1 , 1,2,...,40i i iY x e i      

is a regression model and to do any statistical inference about the parameters, we assumed that 

the error terms will be independent and identically distributed random variables. We usually 

use the residuals to check these assumptions. As we remember, we the residuals are orthogolal 

to the explonatory observations and to the predicted values (sum of the products is zero). 

Moreover, the sum of the residuals is also zero. That is, any pattern in these plots indicates a 

violotion of the assumtions. That is, we need to look at plot of residuals versus x ’s, residuals 

versus ŷ ’s and residuals versus observations . If we see any kind of pattern we need to make 

some transformation to verify the assumtion. Moreover, in order to do any statistical inferences 

about the parameters we need the normality assumption of the error terms. There are many ways 
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to check the normality assumptions (Kolmogorov-Simirnov, Shapiro-Wilk, Cramer-von Mises, 

Anderson-Darling tests, and some plots like PP-plot, QQ plot and normal probability plot, Box-

Cox plot, etc.) but here we are going to look at the normal probability plot. If we observe a 

linearity in the normal probability plot, we can conclude that the error terms are normally 

distributed. The residuals and the predicted values are obtained from the fitted regression line 

and given in the following table.    

 

             Obs     x      y       yhat       ehat                                                                                      

               1     6    14.6    14.8415    -0.24153                                                                                    

               2     9    17.0    17.6291    -0.62906                                                                                    

               3    12    20.5    20.4166     0.08342                                                                                    

               4     8    16.3    16.6999    -0.39988                                                                                    

               5     2    11.0    11.1248    -0.12484                                                                                    

               6    11    19.2    19.4874    -0.28740                                                                                    

               7    13    21.7    21.3458     0.35425                                                                                    

               8    11    19.3    19.4874    -0.18740                                                                                    

               9     5    13.4    13.9124    -0.51236                                                                                    

              10     8    16.5    16.6999    -0.19988                                                                                    

              11    10    18.5    18.5582    -0.05823                                                                                    

              12    15    23.4    23.2041     0.19590                                                                                    

              13     7    15.9    15.7707     0.12929                                                                                    

              14    13    21.7    21.3458     0.35425                                                                                    

              15    11    19.1    19.4874    -0.38740                                                                                    

              16    14    22.3    22.2749     0.02507                                                                                    

              17    11    19.7    19.4874     0.21260                                                                                    

              18     8    16.7    16.6999     0.00012                                                                                    

              19     4    12.0    12.9832    -0.98318                                                                                    

              20    11    19.1    19.4874    -0.38740                                                                                    
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              21    11    19.6    19.4874     0.11260                                                                                    

              22     5    16.5    13.9124     2.58764                                                                                    

              23    11    19.4    19.4874    -0.08740                                                                                    

              24    16    24.1    24.1333    -0.03327                                                                                    

              25    10    18.8    18.5582     0.24177                                                                                    

              26    13    21.1    21.3458    -0.24575                                                                                    

              27    12    20.5    20.4166     0.08342                                                                                    

              28     5    13.4    13.9124    -0.51236                                                                                    

              29     9    17.0    17.6291    -0.62906                                                                                    

              30    10    18.2    18.5582    -0.35823                                                                                    

              31    10    18.5    18.5582    -0.05823                                                                                    

              32    17    25.1    25.0624     0.03755                                                                                    

              33    15    23.7    23.2041     0.49590                                                                                    

              34     7    15.8    15.7707     0.02929                                                                                    

              35     7    15.1    15.7707    -0.67071                                                                                    

              36     9    17.3    17.6291    -0.32906                                                                                    

              37     8    16.9    16.6999     0.20012                                                                                    

              38     9    18.0    17.6291     0.37094                                                                                    

              39     6    16.7    14.8415     1.85847                                                                                    

              40    20    27.8    27.8500    -0.04997                                                                                    

Predicted values (yhat) and residuals (ehat) 

 

 In the following residual plots indicate that the assumptions of the regression equation are 

valid. As we see from the plot of residuals against the x ’s, ˆiy s and i ’s no pattern (linear, 

parabolic, etc.) appears. Moreover, in the last plot ( ˆie  versus 1îe  ) again no pattern appears. 

This plot indicates that there is no first order autocorrecation in the error term. We may also 

check some other order of autocorrelation (plotting ˆie  against for example 2îe   for the second 
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order of autocorrelation). There is also test for checking autocorrelations (Durbin-Watson test) 

but we are not going to investigate here.   

 

Residuals versus x ’s ( ˆie  vs. ix )  Residuals versus predicted values ˆie vs. ˆiy  

) 

  

Residuals versus observations ( ˆie vs. i  ) Plot of ˆie  versus 1îe   

  

 

Checking for Normality:  

 One of the main assumption in any statistical inference is the normality of the data. As it is 

mentioned above, there are many ways to look at the normality. In the following, we are going 

to look at the normal probability plot of the residuals.  

 

                   Tests for Normality                                                                                

 Test                  --Statistic---    -----p Value------                                                                               

Shapiro-Wilk          W     0.980542    Pr < W      0.7367                                                                               

Kolmogorov-Smirnov    D     0.096539    Pr > D     >0.1500                                                                               

Cramer-von Mises      W-Sq  0.037226    Pr > W-Sq  >0.2500                                                                               

Anderson-Darling      A-Sq   0.23493    Pr > A-Sq  >0.2500                                                                               

***************************************************************                                                                          
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                   Normal Probability Plot                                                                         
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Normality tests and the Normal Probability Plot 

 

 If we observe a linearity in the normal probability plot, we can assume the normality of the 

error term. In the following, the normal probability plot and some results of the normality test 

have been run and given in the above table. A linearity is obvious in the normal probability plot 

and therefore it is reasonable to assume the normality of the error terms in the regression 

equation.  

 

 


