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WEEK 14 

 

12.  Multiple Regression and Model Building  

 

In the above discussion, we have studied the simple linear regression (means that there is 

only one explanatory or independent variable).  In the regression analysis we may have more 

than one explanatory variables.  

Let 1 2( , , ,..., )pY X X X  be the random variables with joint probability (or probability 

density) function 
1 2, , ,..., 1 2( , , ,..., )

pY X X X pf y x x x . In a similar way, we can find the conditional 

probability (or probability density) function of Y  given  1 1 2 2, ,..., p pX x X x X x    as 
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where 
1 2, ,..., 1 2( , ,..., ) 0

pX X X pf x x x  . And in a similar way, we can calculate the conditional 

expectation of Y  given 1 1 2 2, ,..., p pX x X x X x    as 

 1 1 2 2 1 2( | , ,..., ) ( , ,..., )p p pE Y X x X x X x h x x x    . 

 This conditional expectation is known as multiple regression of Y  on the explanatory 

variables 1 2, ,..., pX X X . As it is obviously seen, this conditional expectation is a function of 

1 2, ,..., px x x , namely, 1 2( , ,..., )ph x x x . If 1 2( , ,..., )ph x x x  is a linear function of x ’s then it is a 

multiple linear regression of Y  on the variables 1 2, ,..., px x x  namely, if 

 1 2 0 1 1 2 2( , ,..., ) ...p p ph x x x x x x         

then it is multiple linear regression of Y  on the variables 1 2, ,..., px x x ,  otherwise it is a non-

linear regression. For the case 1p   the linear regression is named as “simple” linear 

regression. In this class we are going to investigate the “linear case” and for simplicity we will 

have two or three explanatory variables in the discussion.  Consider the following multiple 

regression of Y  on the explanatory variables 1x , 2x  and 3x  

 0 1 1, 2 2, 3 3, , 1,2,...,i i i i iY x x x e i n               (1) 

 The assumptions of a multiple regression model is the same as the simple linear regression,  

 the error terms ( ie ) are independent and identically distributed random variables (for 

statistical inferences we can add the normality) 
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 the explanatory variables ( 1x , 2x  and 3x ) are fixed, in the sense that the are not random. 

The model can be written in a matrix notation as y X e    where 
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Therefore the OLS estimator of the parameter vector is 1ˆ ( )X X X y   . Using this OLS 

estimator we write the fitted regression equation as ˆŷ X  and thus the residual vector will 

be written as ˆ ˆe y y  .   

It is important to note that if at least one of the column of the X  matrix is linearly related to 

any other columns of X , the matrix X X  is singular and therefore 1( )X X   matrix is undefined. 

In this case there is a multicolinearity problem in the data. In this class we are not going to 

discuss the multicolinearity problem.    

Notes: If a k  variate random vector 1 2( , ,..., )kX X X X   has mean ( )E X   and the 

variance covariance matrix   then  

    ( ) ( )E a b X a b E X a b          and ( ) ( )Var a b X b Var X b b b       

  when X  is a multivariate normally distributed random vactor with the mean vector 

  and variance covariance matrix   ( ~ ( , )X N   ) then ~ ,( )a b X N a b b b    

. 

 Under the normality of the error term (
2~ (0, )ne N I ) the dependent vector is also normally 

distributed ( 2~ ( , )ny N X I  and Since the OLS estimator ̂  is a linear combination of y , ̂  

is also normally distributed random vactor with the mean vector and the variance covariance 

matrix    and 2 1( )X X   respectively because  

  1 1 1ˆ( ) (( ) ) ( ) ( ) ( )E E X X X y X X X E y X X X X              

and  
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Therefore “similar to the simple linear regression”, we can do any statistical inferences 

(hypothesis testing, confidence intervals etc.) for the regression parameters.  

 

 Example: Assume that there is a linear relationship between the test scores (Y ) and the IQ 

level ( 1X ), study hour ( 2X ) for preparation to the examination. That is, we assume that the 

following data set is appropriate for a multiple linear regression model. In the model the third 

variable 3X  is just the product of 1X  and 2X  ( 3 1 2X X X ) which is known as the interaction 

term. The data contains variables Y  (test score), 1X  (IQ level) and 2X  (working hour) and we 

want to look at the contributions of the explanatory variables on the test scores. The model we 

want to investigate is 

   0 1 1, 2 2, 3 1, 2, , 1,2,...,8i i i i i iY x x x x e i         . 

1X  2X  Y  1 2X X  1X Y  2X Y  2
1X  

2
2X  

105 10 75 1050  7875 750 11025 100 

110 12 79 1320  8690 948 12100 144 

120  6 68  720  8160 408 14400   36 

116 13 85 1508  9860 1105 13456 169 

122 16 91 1952 11102 1456 14884 256 

130  8 79 1040 10270 632 16900   64 

114 20 98 2280 11172 1960 12996   400 

102 15 76 1530    7752 1140 10404   225 

 

 In the matrix notation a regression model can be written as  

  y X e   

 with the following matrices:  
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Using these matrices we calculate 

8 919 100 11400

919 106165 11400 1306102

100 11400 1394 158366
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and the OLS estimates of the parameters, the fitte values and residuals are 

 1
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0.131ˆ ( )
4.111
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 
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 Note that (considering the rounding error) we have the following results: 

8 8

1 1

ˆ 651.0i i
i i

y y
 

   ,    
8

1

ˆ 0i
i

e


   , 
8

1,
1

ˆ 0i i
i

x e


  

  
8

2,
1

ˆ 0i i
i

x e


  ,    
8

3,
1

ˆ 0i i
i

x e


 ,    
8

1

ˆ ˆ 0i i
i

y e


 .  

The fitted regrtession equation given below 

1, 2, 1, 2,
ˆ 72.2 0.131 4.111 0.053 , 1,2,3,...,i i i i iY x x x x i n      

and the predicted values with residuals are given in the following table.  

Y  75 79 68 85 91 79 98 76 

Ŷ  73.046

5 

78.497

6 

70.010 83.576

8 

94.0198 77.458

7 

96.032

0 

78.3585 

ê  1.9534

6 

0.5024

1 

-2.010 1.4232

5 

-

3.01983 

1.5412

8 

1.9679

7 

-2.35854 

 

 Using these predicted values and residuals we calculate the following suma of squares as 

2 2

1 1

( ) 641.875
n n

i n i n
i i

SST Y Y Y nY
 

      , 

2 2

1 1

ˆ ˆ( ) 610.81033
n n

i n i n
i i

SSR Y Y Y nY
 

      , 

641.875 610.81033 31.06467SSE SST SSR     .  

Now we can construct the ANOVA table as 

SoV  .d f  SS   MS   F   

Regresyon 3 610.81033 610.81033 26.22 

Artıklar 4 31.06467 7.76617  

Toplam 7 641.875.   

 

Notice that the value of 2R  is 
2 / 0.9516 0.95R SSR SST   . This means that almost 95% of 

all variability in Y  is explained by the explanatory variables ( X ’s). Moreover, since 
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 0.0526.22 (3,4) 6.59hF F    

the model seems to be significant at 5% level ( we reject the null hypotheisi 

0 1 2 3: 0H       at 5% level). On the other hand, the standard variance of the interaction 

term is 3
ˆ( ) 0.03858s    (because 2 1

3 4,4
ˆ( ) ( )s MSE X X   which implies that 

2
3
ˆ( ) (0.0001916598) 0.001488s MSE    and thus the standard error is 3

ˆ( ) 0.03858s   ). Let us 

try to test whether the interaction term is significant or not. In order to test whether the 

interaction term is significant or not, we need to test 0 3: 0H    against the alternative of  

3: 0aH   . If we reject this null hypothesis we can conclude that the interaction term (or the 

parameter 3 ) is significant. The value of t  statistics is  calculated as  

 3 3ˆ ˆ/ ( ) 0.053071/ 0.03858 1.376ht s    . 

and since 4| | 1.376 (0.025) 2.7667ht t    we fail to reject the null hypothesis. This means that 

the interaction term is insignificant at 5% level. In a similar way, we can test the other 

parameters ( 0 1: 0H    and 0 2: 0H   )  and we notice that all three parameters are 

insignificant. the results are summarized in the following table. 

Parameter estimate Stand. error T: 0 : 0iH    5% critical 

value 

result 

1  -0.131170 0.45529954 -0.288 2.7667 Accept 

0H   

2  -4.111072 4.52430095 -0.909 2.7667 Accept 

0H  

3  0.053071 0.03858059 1.376 2.7667 Accept 

0H  

 

According to the table values, there seems to be a contradiction because when we want to 

test 0 1 2 3: 0H       at 5% level we rejected the null (means that all three parameters are 

not zero) however if we want to test these parameters seperately we failed to reject the null 

hypotheses. Moreover, we can see (from the table) that the value of 2R  is quite large.  Actually 

this is not a contradiction because rejecting (or failing to reject) the null of 

0 1 2 3: 0H       does not imply to reject the null of 0 1: 0H    (or others). Similarly, 

rejecting (or failing to reject ) 0 : 0iH    for all i  does not imply to reject (or fail to reject )

0 1 2 3: 0H      . 
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The SAS codes and output of the analysis are given in the following table. according to 

table, even we reject the null of 0 1 2 3: 0H       at 5% level ( 0.0526.22 (3,4)hF F  ) we 

fail to reject the null of 0 : 0iH    for all 1,2,3i   (even the intercept term) and if we notişce 

that the percentage of the variability explaned by the model (the value of 2R ) is quite large, 

more that 95%.  

 

data a; input x1 x2 y; x3=x1*x2; cards; 

105 10 75                                                                                                                                

110 12 79                                                                                                                                

120  6 68                                                                                                                                

116 13 85                                                                                                                                

122 16 91                                                                                                                                

130  8 79                                                                                                                                

114 20 98                                                                                                                                

102 15 76                                                                                                                                

;                                                                                                                                        

proc reg; model y=x1 x2 x3;                                                                                                              

output out=out residual=ehat predicted=yhat; proc print data=out; run;                                                                                             

*************************************************************************                                                               

                         Analysis of Variance                                                                                            

                           Sum of         Mean                                                                                           

Source              DF     Squares      Square    F Value    Pr > F                                                                      

Model                3   610.81033   203.60344      26.22    0.0043                                                                      

Error                4    31.06467     7.76617                                                                                           

Corrected Total      7   641.87500                                                                                                       

*************************************************************************                                                               

            Root MSE              2.78678    R-Square     0.9516                                                                         
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            Dependent Mean       81.37500    Adj R-Sq     0.9153                                                                         

            Coeff Var             3.42462                                                                                                

*************************************************************************                                                               

                       Parameter Estimates                                                                                               

                     Parameter       Standard                                                                                            

Variable     DF       Estimate          Error    t Value    Pr > |t|                                                                     

Intercept     1       72.20608       54.07278       1.34      0.2527                                                                     

x1            1       -0.13117        0.45530      -0.29      0.7876                                                                     

x2            1       -4.11107        4.52430      -0.91      0.4149                                                                     

x3            1        0.05307        0.03858       1.38      0.2410                                                                     

*************************************************************************                                                               

  Obs     x1    x2     y     x3       yhat       ehat                                                                                    

   1     105    10    75    1050    73.0465     1.95346                                                                                  

   2     110    12    79    1320    78.4976     0.50241                                                                                  

   3     120     6    68     720    70.0100    -2.01000                                                                                  

   4     116    13    85    1508    83.5768     1.42325                                                                                  

   5     122    16    91    1952    94.0198    -3.01983                                                                                  

   6     130     8    79    1040    77.4587     1.54128                                                                                  

   7     114    20    98    2280    96.0320     1.96797                                                                                  

   8     102    15    76    1530    78.3585    -2.35854                                                                                                                                               

 

Now we consider the regression model without an intercept term as 

 0 1 1, 2 2, , 1,2,...,8i i i iY x x e i       . 

According to this model the parameters are now significant (intercept term is still 

insignicicant, the cprresponding p-value is large). The SAS codes and ouput for this model is 

given below. The value of 2R  decreased from 95% to 93%. That is there is a little loss from the 

percentage of the variability. This is always the case because if you add a new explanatory 

variable to the model, the value of 2R  increases (here the loss is very little). The main question 



8 
 

here is to search the contributions of the explanatory variables to the dependent variables. That 

is, we want to calculate the partial coefficient of determination( 2R  is also known as the 

coefficient of total determination).  

data a; input x1 x2 y;                                                                                                                   

x3=x1*x2;                                                                                                                                

cards;                                                                                                                                   

105 10 75                                                                                                                                

110 12 79                                                                                                                                

120  6 68                                                                                                                                

116 13 85                                                                                                                                

122 16 91                                                                                                                                

130  8 79                                                                                                                                

114 20 98                                                                                                                                

102 15 76                                                                                                                                

;                                                                                                                                        

proc reg; model y=x1 x2;                                                                                                                 

output out=out residual=ehat predicted=yhat;                                                                                             

proc print data=out;  run;                                                                                                               

************************************************************************                                                                 

                    Analysis of Variance                                                                                                 

                           Sum of           Mean                                                                                         

Source          DF        Squares         Square    F Value    Pr > F                                                                    

Model            2      596.11512      298.05756      32.57    0.0014                                                                    

Error            5       45.75988        9.15198                                                                                         

Corrected Total  7      641.87500                                                                                                        

************************************************************************                                                                 

            Root MSE              3.02522    R-Square     0.9287                                                                         
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            Dependent Mean       81.37500    Adj R-Sq     0.9002                                                                         

            Coeff Var             3.71763                                                                                                

************************************************************************                                                                 

                         Parameter Estimates                                                                                             

                      Parameter       Standard                                                                                           

 Variable     DF       Estimate          Error    t Value    Pr > |t|                                                                    

 Intercept     1        0.73655       16.26280       0.05      0.9656                                                                    

 x1            1        0.47308        0.12998       3.64      0.0149                                                                    

 x2            1        2.10344        0.26418       7.96      0.0005                                                                    

************************************************************************                                                                 

       Obs     x1    x2     y     x3       yhat       ehat                                                                               

        1     105    10    75    1050    71.4447     3.55529                                                                             

        2     110    12    79    1320    78.0170     0.98300                                                                             

        3     120     6    68     720    70.1272    -2.12722                                                                             

        4     116    13    85    1508    82.9589     2.04106                                                                             

        5     122    16    91    1952    92.1077    -1.10775                                                                             

        6     130     8    79    1040    79.0649    -0.06493                                                                             

        7     114    20    98    2280    96.7368     1.26318 

        8     102    15    76    1530    80.5426    -4.54264 

 

In order to calculate the partial determination we need to define ther partial sums of squares.  

We now consider the following four models: 

Model I       0 1 1, 2 2, 3 3, , 1,2,3,...,i i i i iY x x x e i n          

Model II  0 1 1, 2 2, , 1,2,3,...,i i i iY x x e i n        

Model  III 0 1 1, , 1,2,3,...,i i iY x e i n      

Model IV 0 2 2, , 1,2,3,...,i i iY x e i n      

and according to these differfent models we calculate regression sum of squares and errror sum 

of squares. 
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 For model I, regression sum of squares  and error sum of squares are denoted by 

1 2 3( , , )SSR X X X  and 1 2 3( , , )SSE X X X   

 For model II, regression sum of squares  and error sum of squares are denoted by 

1 2( , )SSR X X  and 1 2( , )SSE X X   

 For model III, regression sum of squares  and error sum of squares are denoted by 

1( )SSR X  and 1( )SSE X   

 For model II, regression sum of squares  and error sum of squares are denoted by 

2( )SSR X  and 2( )SSE X  . 

Generally, the partial sum of squares, for example the partial sum of squares related to the 

explanatory variable 2X  when there are three explanatory variables in the model (Model I) is 

defined as  

 2 1 3 1 3 1 2 3( | , ) ( , ) ( , , )SSR X X X SSE X X SSE X X X  .  

Using this partial sum of squares, the partial coefficient of determination (the percentage 

of the variability explained by the explanatory variable 2X  when there are two more 

explanatory variables 1X  and 2X  ) is defined as 

2 2 1 3
2.13

1 3

( | , )

( , )
Y

SSR X X X
r

SSE X X
  . 

Using these sums of squares, we can define the partial sums of squares. Here, we assume 

that  model I is the full model. Actually there are two types of partial sum of squares. One is 

known as  Type I SS or squential SS or additive sums of square. 

Type I SS: 

Consider the full model 

0 1 1, 2 2, 3 3, , 1,2,3,...,i i i i iY x x x e i n          

and calculate 1( )SSR X  and 1( )SSE X  from Model III 

     calculate  1 2( , )SSR X X  and 1 2( , )SSE X X  from Model II 

    calculate 1 2 3( , , )SSR X X X  and 1 2 3( , , )SSE X X X  from Model I 

then the sequential SS are calculated as follows: 

 1X  :  1( )SSR X  

 2X : 2 1 1 1 2( | ) ( ) ( , )SSR X X SSE X SSE X X   

 3X : 3 1 2 1 2 1 2 3( | , ) ( , ) ( , , )SSR X X X SSE X X SSE X X X   

Note that  
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1 2 1 3 1 2

1 1 1 2 1 2 1 2 3

1

( ) ( | ) ( | , )

( ) [ ( ) ( , )] [ ( , ) ( , , )]

( )

SSR X SSR X X SSR X X X

SSR X SSE X SSE X X SSE X X SSE X X X

SST SSE X

 

    

  1( )SSE X 1 2( , )SSE X X 1 2( , )SSE X X 1 2 3

1 2 3 1 2 3

( , , )

( , , ) ( , , )

SSE X X X

SST SSE X X X SSR X X X



  

 

and therefore the sequential SS’s are additive.  

 

Type II SS: 

In order to calculate Type II sums of squares we consider the full model as 

0 1 1, 2 2, 3 3, , 1,2,3,...,i i i i iY x x x e i n          

and calculate Type II SS’s as 

1X  :  1 2 3 2 3 1 2 3( | , ) ( , ) ( , , )SSR X X X SSE X X SSE X X X   

 2X : 2 1 3 1 3 1 2 3( | , ) ( , ) ( , , )SSR X X X SSE X X SSE X X X   

 3X : 3 1 2 1 2 1 2 3( | , ) ( , ) ( , , )SSR X X X SSE X X SSE X X X  . 

Notice that these SS’s are not additive.    

 

Example: Connsider the previous example and we run four models given above. The 

ANOVA tables for these models are given below. In order to calculate especially for Type II 

SS’s, we also need 1 3( , )SSR X X , 1 3( , )SSE X X , 2 3( , )SSR X X  and 2 3( , )SSE X X . These values are 

also calculated by running two more regression equations and given below. In a summary, we 

have the following results: 

1 2 3( , , ) 610.81033SSR X X X   ,  1 2 3( , , ) 31.06467SSE X X X  ,      641.875SST   

1 2( , ) 596.11512SSR X X    ,  1 2( , ) 45.75988SSE X X   

1( ) 15.9393SSR X    , 1( ) 625.9357SSE X   

2( ) 474.87674SSR X    ,  2( ) 166.99826SSE X   

1 3( , ) 604.39802SSR X X    , 1 3( , ) 37.47698SSE X X   

2 3( , ) 610.16574SSR X X    , 2 3( , ) 31.70926SSE X X   

Now, we can calculate the Type I and Type II sums of squares are calculated as follows.  

 

Type I SS’s: 

  1X  :  1( ) 15.9393SSR X   

 2X : 2 1 1 1 2( | ) ( ) ( , ) 625.9357 45.75988 580.17582SSR X X SSE X SSE X X      

3X : 3 1 2 1 2 1 2 3( | , ) ( , ) ( , , ) 45.75988 31.06467 14.69521SSR X X X SSE X X SSE X X X      
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Type II SS’s: 

  1X  :  1 2 3 2 3 1 2 3( | , ) ( , ) ( , , ) 31.70926 31.06467 0.64459SSR X X X SSE X X SSE X X X      

  2X : 2 1 3 1 3 1 2 3( | , ) ( , ) ( , , ) 37.47698 31.06467 6.41231SSR X X X SSE X X SSE X X X      

  3X : 3 1 2 1 2 1 2 3( | , ) ( , ) ( , , ) 45.75988 31.06467 14.69521SSR X X X SSE X X SSE X X X      

 

Therefore using the Type I SS’ss and Type II SS’s, the partial determinations of the 

explanatory variables 1X , 2X  and 3X  are calculated as follows. 

 If we have three explanatory variables in the regression model given by 

 0 1 1, 2 2, 3 3, , 1,2,3,...,i i i i iY x x x e i n          

the multiple coefficient of determination is defined as 2
1 2 3( , , ) /R SSR X X X SST . Let us 

show this multiple coefficient of determination as 

 2 21 2 3
.123

( , , )
Y

SSR X X X
R R

SST
  . 

Using the partial sums of squares, the partial coefficients of determinations care calculated 

according to Type I SS’s as 

 2 2 2 3 1 21 2 1
.1 2.1 3.12

1 1 2

( | , )( ) ( | )
, ,

( ) ( , )
Y Y Y

SSR X X XSSR X SSR X X
r r r

SST SSE X SSE X X
    

and the values are  

2 1
.1

( ) 15.939299
0.0248

641.875
Y

SSR X
r

SST
    

2 2 1
2.1

1

( | ) 580.175816
0.92689

( ) 625.9357
Y

SSR X X
r

SSE X
    

2 3 1 2
3.12

1 2

( | , ) 14.695210
0.321

( , ) 45.75988
Y

SSR X X X
r

SSE X X
   . 

 Note that more than 95% of all variability in Y  is explained by the model. That is, 

   2 2
1 2 3 .123( , , ) / 0.9516YR SSR X X X SST R    

and among all these variability more than 92% of all variability is explaned by only 2X . In 

other words, the IQ level has no effect (only about 2.5%) on the test scores.    

 Finally, we consider the multiple linear regression model given above. Suppose we want to 

do some statistical inferences about the parameters. We consider the regression model as 

   0 1 1, 2 2, , 1,2,3,...,8i i i iY x x e i        

 The values of the OLS estimators and their standard errors are given in the following table. 
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0
ˆ 0.73655   , 0

ˆ( ) 16.2628s   ,   1
ˆ 0.47308   , 1

ˆ( ) 0.12998s   ,  2
ˆ 2.10344   , 1

ˆ( ) 0.26418s     

Let us write 95% confidence interval for the model parameters 0 , 1  and 2 . Note that from 

5 5( (0.025)) 0.025P t t   we find the critical value from the t  table as 5(0.025) 2.571t  . The 

(1 )100%  confidence intervals for the parameters can be calculated as 3
ˆ ˆ( ) ( / 2)i i ns t    for 

0,1,2i  . Here, p  is the number of parameters in the model.  

 Therefore a 95% confidence interval for 0  is 

     0 0 5
ˆ ˆ( ) (0.025) 0.73655 (16.268)(2.571) ( 41.09,42.57)s t       

Note that it is a very wide confidence interval for the intercept term. This is meaningful because 

the intercept term is insignificant because we failed to reject the null hypothesis of 0 0: 0H  

.   

 A 95% confidence interval for 1  

 1 1 5
ˆ ˆ( ) (0.025) 0.473 (0.13)(2.57) (0.139,0.807)s t      

and for 2  

 2 2 5
ˆ ˆ( ) (0.025) 2.103 (0.26)(2.57) (1.435,2.771)s t     . 

 

                    Analysis of Variance                                                                                        

                                    Sum of           Mean                                                                                

Source                   DF        Squares         Square    F Value    Pr > F                                                           

Model                     3      610.81033      203.60344      26.22    0.0043                                                           

Error                     4       31.06467        7.76617                                                                                

Corrected Total           7      641.87500                                                                                               

 

_________________________________________________________________________

_______                                                                                                                                        

                      Root MSE              2.78678    R-Square     0.9516                                                               

                      Dependent Mean       81.37500    Adj R-Sq     0.9153                                                               

                      Coeff Var             3.42462                                                                                      

_________________________________________________________________________

__________                                                                                                                                        

                                      Parameter Estimates                                                                                
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                                   Parameter       Standard                                                                              

     Variable     DF       Estimate          Error    t Value    Pr > |t|                                                                

     Intercept     1       72.20608       54.07278       1.34      0.2527                                                                

     x1            1       -0.13117        0.45530      -0.29      0.7876                                                                

     x2            1       -4.11107        4.52430      -0.91      0.4149                                                                

     x3            1        0.05307        0.03858       1.38      0.2410                                                                

*************************************************************************

**********                                                      

                    Analysis of Variance                                                                                                 

                                    Sum of           Mean                                                                                

Source                   DF        Squares         Square    F Value    Pr > F                                                           

Model                     2      596.11512      298.05756      32.57    0.0014                                                           

Error                     5       45.75988        9.15198                                                                                

Corrected Total           7      641.87500                                                                                               

_________________________________________________________________________

_________                                                                                                                                        

                      Root MSE              3.02522    R-Square     0.9287                                                               

                      Dependent Mean       81.37500    Adj R-Sq     0.9002                                                               

                      Coeff Var             3.71763                                                                                      

_________________________________________________________________________

_________                                                                                                                                        

                             Parameter Estimates                                                                                         

                          Parameter       Standard                                                                                       

     Variable     DF       Estimate          Error    t Value    Pr > |t|                                                                

     Intercept     1        0.73655       16.26280       0.05      0.9656                                                                

     x1            1        0.47308        0.12998       3.64      0.0149                                                                

     x2            1        2.10344        0.26418       7.96      0.0005    
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                                      Analysis of Variance                                                                               

                                             Sum of           Mean                                                                       

Source                   DF        Squares         Square    F Value    Pr > F                                                           

Model                     1       15.93930       15.93930       0.15    0.7094                                                           

Error                     6      625.93570      104.32262                                                                                

Corrected Total           7      641.87500                                                                                               

 

_________________________________________________________________________

________                                                                                                                                        

                      Root MSE             10.21384    R-Square     0.0248                                                               

                      Dependent Mean       81.37500    Adj R-Sq    -0.1377                                                               

                      Coeff Var            12.55158                                                                                      

_________________________________________________________________________

__________                                                                                                                                         

                             Parameter Estimates                                                                                         

                          Parameter       Standard                                                                                       

     Variable     DF       Estimate          Error    t Value    Pr > |t|                                                                

     Intercept     1       62.57113       48.24164       1.30      0.2423                                                                

     x1            1        0.16369        0.41877       0.39      0.7094                                                                

*************************************************************************

**********                                                      

                             Analysis of Variance                                                                                        

                                    Sum of           Mean                                                                                

Source                   DF        Squares         Square    F Value    Pr > F                                                           

Model                     1      474.87674      474.87674      17.06    0.0061                                                           

Error                     6      166.99826       27.83304                                                                                

Corrected Total           7      641.87500                                                                                               
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_________________________________________________________________________

_________                                                                                                                                        

                      Root MSE              5.27570    R-Square     0.7398                                                               

                      Dependent Mean       81.37500    Adj R-Sq     0.6965                                                               

                      Coeff Var             6.48320                                                                                      

_________________________________________________________________________

_________                                                                                                                                         

                             Parameter Estimates                                                                                         

                          Parameter       Standard                                                                                       

     Variable     DF       Estimate          Error    t Value    Pr > |t|                                                                

     Intercept     1       58.67535        5.80344      10.11      <.0001                                                                

     x2            1        1.81597        0.43964       4.13      0.0061                                                                

 

Note that the intercept term is insignificant either by considering the inretactin term or not. 

Therefore it is reasonable to consider a regression model without having an intercept term. 

Another point is to note that the interaction term is insignificant. That’s why we consider a 

regression model with two explanatory variables (IQ level and study-hour) as 

 1 1, 2 2, , 1,2,3,...,8i i i iY x x e i     .  

The OLS estimators of the parameters and some statistical results with the ANOVA table 

is in the following table. According to this model (model without intercept) all the parameters 

are significant and the percentage of the variability increased from 95% to more that 99%. On 

the other hand, if the model includes an intercept term, we know that the residuals are 

orthogonal to the explanatory variables and the predicted values. Moreover the sum of the 

residuals is zero. However if the model does not inclue an intercept term this may not be true. 

remember that if the model includes an intercept term we always have  

1 1

ˆ
n n

i i

i i

y y

 

  ,  
1

ˆ 0
n

i

i

e



 , 
1

ˆ ˆ 0
n

i i

i

e y



 ,  1,

1

ˆ 0
n

i i

i

e x



   and  2,

1

ˆ 0
n

i i

i

e x



  

and when we consider the case without an intercept term we have the following sums 

 
1

651
n

i

i

y



  and    
1

ˆ 650.974512
n

i

i

y



  so that  
1 1

ˆ
n n

i i

i i

y y

 

   
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 
1

ˆ 0.00319595
n

i

i

e



  so that  
1

ˆ 0
n

i

i

e



  

 
1

ˆ ˆ 0.00012761
n

i i

i

e y



  ,     1,

1

ˆ 0.00018375
n

i i

i

e x



   and  2,

1

ˆ 0.00001
n

i i

i

e x



  

 

data a; input x1 x2 y;                                                                                                                                                                                                                                                 

cards;                                                                                                                                   

105 10 75                                                                                                                                

110 12 79                                                                                                                                

120  6 68                                                                                                                                

116 13 85                                                                                                                                

122 16 91                                                                                                                                

130  8 79                                                                                                                                

114 20 98                                                                                                                                

102 15 76                                                                                                                                

;                                                                                                                                        

proc reg; model y=x1 x2/noint ss1 ss2;                                                                                                   

output out=out residual=ehat predicted=yhat; proc print data=out;  run;                                                                                                                                                                                                          

*************************************************************************

****************                                                                                     

           NOTE: No intercept in model. R-Square is redefined.                                                               

                          Analysis of Variance                                                                               

                                 Sum of           Mean                                                                       

Source                DF        Squares         Square    F Value    Pr > F                                                  

Model                  2          53571          26786    3510.67    <.0001                                                  

Error                  6       45.77866        7.62978                                                                       

Uncorrected Total      8          53617                                                                                      

*************************************************************************

****************                                            
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          Root MSE              2.76220    R-Square     0.9991                                                               

          Dependent Mean       81.37500    Adj R-Sq     0.9989                                                               

          Coeff Var             3.39441                                                                                      

*************************************************************************

****************                                      

                             Parameter Estimates                                                                                   

                Parameter      Standard                                                                                            

Variable  DF    Estimate         Error   t Value   Pr > |t|     Type I SS    Type II SS                                           

x1         1     0.47885       0.02429     19.72     <.0001         52816    2966.34258                                           

x2         1     2.10915       0.21193      9.95     <.0001     755.65914     755.65914                                           

*************************************************************************

****************                                          

          Obs     x1    x2     y         yhat       ehat     .                                                  

           1     105    10    75        71.3703     3.62967     

           2     110    12    79        77.9829     1.01714                                                       

           3     120     6    68        70.1164    -2.11642                                                      

           4     116    13    85        82.9651     2.03491                                                       

           5     122    16    91        92.1656    -1.16562                                                      

           6     130     8    79        79.1232    -0.12318                                                       

           7     114    20    98        96.7714     1.22855     

           8     102    15    76        80.4795    -4.47955     

 

 

Model Selection:  

 Any dependent variable may be affected by many explanatory variables. The goal in model 

building is to select the best set of explanatory variables (in statictically or economically). There 

are many statistical methods to select such a set of explanatory variables bu here we are going 

to investigate the simple and applicable one. Having more explanatory variables in the model 

may cause many problems. Therefore, it is important to choose the best set of explanatory 

variables in the model. Adding a new explanatory variable to the model, the percentage of the 
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variability increases (the value of 2R  increases). However, adding a new variable to the model 

will have a cost (either economically or statistically) to pay.  That’s why we need to built models 

with a minimum cost. There are many statistical methods to built such models (for example, 

choose the models with have the smallest value of AIC statistic, or SBC statistic. These 

statistical techniques choose models with minimize the cost or penalty). In this class we are not 

going to discuss such techniques.  

 In some cases, adding a new explanatory variable to the model may cause statistical problem. 

For example, even the value of percentage of variablility increases a significant parameter may 

turn out to be insignificant (or wise versa). Therefore, adding such an explanatory variable is 

not meaningful.   

Consider a linear regression equation with 3  explanatory variables 

  0 1 1, 2 2, 3 3, , 1,2,3,...,i i i i iY x x x e i n         .   Model I 

 If we run this regression we can calculate the value of 2R  and the values of OLS estimators 

of the regression parameters i ’s.  Suppose we add a new explanatory variable to the model 

and write as 

   0 1 1, 2 2, 3 3, 4 4, , 1,2,3,...,i i i i i iY x x x x e i n           .  Model II 

 We can either start from Model II by eliminating the expanatory variables (backward 

selection) or we can start from Model I by adding a new variable (forward selection) to get sa 

significant model.  The most practical way of selection of a suitable model, we start with the 

first explanatory variable and start to add a new variable and notice all the statistical properties. 

It is very similar to do same analyses starting with all explanatory variables and we eliminate 

insignificant explanatory variablesstep-by-step. This technique is known as the stepwise 

regression approach. As it is mentioned, there are many model selection (selection of significant 

explanatory variables) criteria.  

 Consider a multiple regression equation with p  explanatory variables as 

  0 1 1, 2 2, ,... , 1,2,3,...,i i i p p i iY x x x e i n          . 

 When we run this regression equation some of the explanatory variables may not be 

significat. Let 2x , 5x  and 8x  be the variables seem to be insignificant. As it is seen in the above 

example, we may fail to reject these hypotheses individually eventhough the whole model is 

significant. That is, we may fail to reject 0 2: 0H   , 0 5: 0H    and 0 8: 0H    individually 

but we may reject 0 2 5 8: 0H       at the same significance level. To make it more clear let 

us consider the model (call this full model) 
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  Full Model: 0 1 1, 2 2, 3 3, 4 4, , 1,2,3,...,i i i i i iY x x x x e i n            

and check whether 2x  and 2x  are significant or not at the same time. That is, we may want to 

test 0 2 3: 0H     or not. We may or may not reject (or fail to reject) 0 2: 0H    and 

0 3: 0H    separately. In order to test the null hypothesis 0 2 3: 0H     we write the reduced 

model 

  Reduced Model: 0 1 1, 4 4, , 1,2,3,...,i i i iY x x e i n        

 The ANOVA table can be constructed according to full and reduced models. Let 

1 2 3 4( , , , )SSR X X X X   and 1 2 3 4( , , , )SSE X X X X  denote the regression sum of squares and error 

sum of squares under the full model (re-name these SS’s as ( )SSR full  and ( )SSE full ). Similarly, 

we can calculate the regression sum of squares and error sum of squares according to reduced 

model (say ( )SSR red  and ( )SSE red )  and in order to test 0 2 3: 0H     we define the F  

statistic 

  
[ ( ) ( )] / 2

( )

SSE red SSE fell
F

MSE full


  . 

 Under the null hypothesis 0 2 3: 0H    , the F  statistic is distributed as F  with 2  and 

( 5)n  ; therefore we reject the null of 0 2 3: 0H     at the level   if /2(2, 5)hF F n  . If 

we have only one parameter to estimate, the value of F  statistic is the same as square of the t  

statistic (that is, if ~ pX t  then 2 ~ (1, )X F p  ).  

 

 Example:  A personnel officer in a governmental agency administered four newly developed 

attitute test to each of 25 applicants for entry-level clerical positions in the agency. For purposes 

of the study, all 25 applicants were accepted for positions irrrespective of their test scores. After 

a probationary period, each applicant was rated for proficiency on the job. It is expected that a 

regression model containing only first-order terms and no interaction term will be appopriate.  

That is we want to consider a regression model as 

  0 1 1, 2 2, 3 3, 4 4, , 1,2,3,...,25i i i i i iY x x x x e i           .   (1) 

 Here we want to find the best possible set of explanatory variables. Actually, according to 

the ANOVA tables given below the second test seems to be insingificant. Therefore, if we can 

afford three variables in the model best model is the appropriate one. That is, the possible model 

is 

   0 1 1, 3 3, 4 4, , 1,2,3,...,25i i i i iY x x x e i              (2) 
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because, ( ) 335.98SSE full   and ( ) 16.8MSE full  , when we run the reduced model we have  

( ) 348.197SSE red  . In order to test wherher model (2) is significant againt the alternative the 

oppropriate model is (2) the value of F  statistic 

 
[ ( ) ( )] /1 (348.197 335.98)

0.73
( ) 16.80

h

SSE red SSE fell
F

MSE full

 
    

and thus we fail to reject the null hypothesis of 0 2: 0H    because 0.050.73 (1,20)hF F  . That 

is model (2) is significant. 

 The scores on the four tests ( 1 2 3 4, , ,X X X X ) and the job proficiency score (Y ) for 25 

employees were as foloows: 

 

 Test Score Job Proficiency 

Score 

Subject 1X  2X  3X  4X  Y  

1 86 110 100 87 88 

2 62 97 99 100 80 

3 110 107 103 103 96 

4 101 117 93 95 76 

5 100 101 95 88 80 

6 78 85 95 84 73 

7 120 77 80 74 58 

8 105 122 116 102 116 

9 112 119 106 105 104 

10 120 89 105 97 99 

11 87 81 90 88 64 

12 133 120 113 108 126 

13 140 121 96 89 94 

14 84 113 98 78 71 

15 106 102 109 109 111 



22 
 

16 109 129 102 108 109 

17 104 83 100 102 100 

18 150 118 107 110 127 

19 98 125 108 95 99 

20 120 94 95 90 82 

21 74 121 91 85 67 

22 96 114 114 103 109 

23 104 73 93 80 78 

24 94 121 115 104 115 

25 91 129 97 83 83 

  

 In the obe discussion, we observe that the possible model is model (2) if we can efford three 

variables in the model.  

 Suppose, if it is possible we want to eliminate one more explanatory variable from the model. 

The first variable is the second test we eliminate. That is, we need to test 

 0 1 2: 0H     (to eliminate 1X  and 2X  ) 

  0 2 3: 0H     (to eliminate 2X  and 3X ) 

 0 2 4: 0H     (to eliminate 2X  and 4X ). 

The correpondig sum of squares to calculate the value F  statistics are 

 3 4( , ) 1111.3126SSE X X    , 1 4( , ) 1672.58526SSE X X     ,      1 3( , ) 606.65745SSE X X  . 

The values of the F  statistics are 

 1,

[ ( ) ( )] / 2 (1111.31 335.98) / 2
23.07

( ) 16.80
h

SSE red SSE fell
F

MSE full

 
    

 2,

[ ( ) ( )] / 2 (1672.59 335.98) / 2
39.78

( ) 16.80
h

SSE red SSE fell
F

MSE full

 
    

 3,

[ ( ) ( )] / 2 (606.66 335.98) / 2
8.056

( ) 16.80
h

SSE red SSE fell
F

MSE full

 
    

and the critical value is 0.05(2,20) 3.49F  . Since, 0.05
, (2,20)i hF F   we reject all these three 

hypothesis.  This means we can not eliminate one more explanatory variable. Finally, the most 

appopriate model is 
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 0 1 1, 3 3, 4 4, , 1,2,3,...,25i i i i iY x x x e i         . 

 As it is mentioned above, adding a new variable to the model the value of 2R  increases. 

However, adding a new variable may cause some statistical problems. First, we consider the 

full model given below. 

 0 1 1, 2 2, 3 3, 4 4, , 1,2,3,...,25i i i i i iY x x x x e i               (3) 

and the results of the regression analysis of data is summarized in Table 1. 

                       Analysis of Variance                                                                                              

                              Sum of           Mean                                                                                      

Source             DF        Squares         Square    F Value    Pr > F                                                                 

Model               4     8718.02248     2179.50562     129.74    <.0001                                                                 

Error              20      335.97752       16.79888                                                                                      

Corrected Total    24     9054.00000                                                                                                     

*************************************************************************

********                                                       

              Root MSE              4.09864    R-Square     0.9629                                                               

              Dependent Mean       92.20000    Adj R-Sq     0.9555                                                               

              Coeff Var             4.44538                                                                                      

*************************************************************************                                                      

    Parameter Estimates                                                                                             

                 Parameter   Standard                                                                                                    

Variable   DF    Estimate      Error  t Value  Pr > |t|   Type I SS   Type II SS                                                       

Intercept   1  -124.38182    9.94106   -12.51    <.0001      212521   2629.83427                                                       

x1          1     0.29573    0.04397     6.73    <.0001  2395.85466    759.83030                                                       

x2          1     0.04829    0.05662     0.85    0.4038  1806.96541     12.21949                                                       

x3          1     1.30601    0.16409     7.96    <.0001  4254.45924   1064.15000                                                       

x4          1     0.51982    0.13194     3.94    0.0008   260.74317    260.74317 

Table 1.  
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 First it is important to note that the model is significant. That is, we reject the null hypothesis 

of 0 1 2 3 4: 0H         at 5% level (the value of F  statistic is large or the corresponding 

p  values is very small). The value of 2R  is very high (R2=0.9626). All the parameters except 

2  are significant. Therefore we eliminate the second test ( 2X ) and consider a new model 

   0 1 1, 3 3, 4 4, , 1,2,3,...,25i i i i iY x x x e i              (4) 

the results according to the model given in (2) are in the Table 2. 

                       Analysis of Variance                                                                                              

                              Sum of           Mean                                                                                      

Source             DF        Squares         Square    F Value    Pr > F                                                                 

Model               3     8705.80299     2901.93433     175.02    <.0001                                                                 

Error              21      348.19701       16.58081                                                                                      

Corrected Total    24     9054.00000                                                                                                     

*************************************************************************

*********                                                               

            Root MSE              4.07195    R-Square     0.9615                                                                         

            Dependent Mean       92.20000    Adj R-Sq     0.9560                                                                         

            Coeff Var             4.41644                                                                                                

*************************************************************************

*********                                                       

                                    Parameter Estimates                                                                                  

                 Parameter   Standard                                                                                                    

Variable   DF    Estimate       Error  t Value  Pr > |t|   Type I SS   Type II SS                                                       

Intercept   1  -124.20002     9.87406   -12.58    <.0001      212521   2623.35826                                                       

x1          1     0.29633     0.04368     6.78    <.0001  2395.85466    763.11559                                                       

x3          1     1.35697     0.15183     8.94    <.0001  6051.48790   1324.38825                                                       

x4          1     0.51742     0.13105     3.95    0.0007   258.46044    258.46044 

Table 2. 
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 According to Table 2. all the parameters are now significant and the model is again 

significant (the value of F  statistics is large and corresponding p-value is small). Moreover, 

the value of R2=0.9615 which is very close the the value for the full model. Therefore we can 

say that the second test (the 2X  variable) has no contribution to the model. That is, there is no 

statistical problem for eliminating the second test from the model.   

 Consider the folowing models: 

 Model I  :  0 1 1, , 1,2,3,...,25i i iY x e i       

 Model II : 0 1 1, 2 2, , 1,2,3,...,25i i i iY x x e i        

 Model III : 0 1 1, 2 2, 3 3, , 1,2,3,...,25i i i i iY x x x e i         . 

  

 First, we run the Model I. The ANOVA table and related statistics are given in Table 3. 

                        Analysis of Variance                                                                                             

                               Sum of           Mean                                                                                     

Source              DF        Squares         Square    F Value    Pr > F                                                                

Model                1     2395.85466     2395.85466       8.28    0.0085                                                                

Error               23     6658.14534      289.48458                                                                                     

Corrected Total     24     9054.00000                                                                                                    

*************************************************************************                                                       

        Root MSE             17.01425    R-Square     0.2646                                                                             

        Dependent Mean       92.20000    Adj R-Sq     0.2326                                                                             

        Coeff Var            18.45363                                                                                                    

*************************************************************************                                                      

                        Parameter Estimates                                                                                              

                     Parameter       Standard                                                                                            

Variable     DF       Estimate          Error    t Value    Pr > |t|                                                                     

Intercept     1       41.32156       18.00985       2.29      0.0312                                                                     

x1            1        0.49224        0.17111       2.88      0.0085 

Table 3. 
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 According to Table 3, the model is significant (the value of F  statistic is big and the 

corresponding p-value is small). Moreover, the parameter 1  is also significant. That is test 1 

seems to be significant in the model. It is important to note that the value of 2R  is vary low 

even the parameter is significant. Therefore, the variable 1X  is significant but in order to 

improve the percentage of the variability we need to add new explanatory variable to the model. 

Thus, we consider Model II 

 0 1 1, 2 2, , 1,2,3,...,25i i i iY x x e i       . 

The corresponding ANOVA table and some statistical values are given in Table 4 below. 

                       Analysis of Variance                                                                                              

                              Sum of           Mean                                                                                      

Source             DF        Squares         Square    F Value    Pr > F                                                                 

Model               2     4202.82007     2101.41003       9.53    0.0010                                                                 

Error              22     4851.17993      220.50818                                                                                      

Corrected Total    24     9054.00000                                                                                                     

 

*************************************************************************                                                               

       Root MSE             14.84952    R-Square     0.4642                                                                              

       Dependent Mean       92.20000    Adj R-Sq     0.4155                                                                              

       Coeff Var            16.10577                                                                                                     

*************************************************************************                                                         

                         Parameter Estimates                                                                                             

                      Parameter       Standard                                                                                           

 Variable     DF       Estimate          Error    t Value    Pr > |t|                                                                    

 Intercept     1       -7.96667       23.31365      -0.34      0.7358                                                                    

 x1            1        0.44830        0.15012       2.99      0.0068                                                                    

 x2            1        0.50441        0.17621       2.86      0.0090 

Table 4.  
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 The investigation of Table 4 indicates that the model is still significant (the value of F 

statistic is large and the p-value is very small). Moreover, both variables seem to be significat. 

However there is a slight increas in the value of 2R . Here, it is important to note that in Model 

I, the intercept term was significant. However, when we add the second variable to the model 

the intercept term turned out to be insignificat. Therfore the model needs to be improved. That 

is, we need to add a new explanatory variable to the model.  

 And thus, we consider model III 

   0 1 1, 2 2, 3 3, , 1,2,3,...,25i i i i iY x x x e i         . 

 The ANOVA table and some statistical values are given in Table 5. below. When we add 

the third variable to the model there is a significant increas in the  value of 2R  (from 46% to 

93%). that is, Model III has a large percentage of variability in  the dependent variable Y . 

However, the significant variable 2X  in Model II turned out to be insignificant.  

 

                       Analysis of Variance                                                                                              

                              Sum of           Mean                                                                                      

Source             DF        Squares         Square    F Value    Pr > F                                                                 

Model               3     8457.27931     2819.09310      99.21    <.0001                                                                 

Error              21      596.72069       28.41527                                                                                      

Corrected Total    24     9054.00000                                                                                                     

*************************************************************************                                                            

      Root MSE              5.33060    R-Square     0.9341                                                                               

      Dependent Mean       92.20000    Adj R-Sq     0.9247                                                                               

      Coeff Var             5.78156                                                                                                      

*************************************************************************                                                        

                        Parameter Estimates                                                                                              

                     Parameter       Standard                                                                                            

Variable     DF       Estimate          Error    t Value    Pr > |t|                                                                     

Intercept     1     -127.77378       12.88053      -9.92      <.0001                                                                     

x1            1        0.34813        0.05451       6.39      <.0001                                                                     
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x2            1        0.04353        0.07362       0.59      0.5606                                                                     

x3            1        1.77921        0.14541      12.24      <.0001 

Table 5.  

 

 Moreover, the intercept term is now significant. Therefore, the explanatory variable 3X  

should be in the model. Moreover, if when we consider a regression model of Y  on 1X  and 3X

, both variables are significant and the value of 2R  is almost the same as in the Model (the value 

of R2=0.9341 decreased to R2=0.9330, a slight decrease). The ANOVA table and related 

statistical results are given in Table 6. below for the model  

  0 1 1, 3 3, , 1,2,3,...,25i i i iY x x e i        

                       Analysis of Variance                                                                                              

                              Sum of           Mean                                                                                      

Source             DF        Squares         Square    F Value    Pr > F                                                                 

Model               2     8447.34255     4223.67128     153.17    <.0001                                                                 

Error              22      606.65745       27.57534                                                                                      

Corrected Total    24     9054.00000                                                                                                     

*************************************************************************                                                      

       Root MSE              5.25122    R-Square     0.9330                                                                              

       Dependent Mean       92.20000    Adj R-Sq     0.9269                                                                              

       Coeff Var             5.69547                                                                                                     

*************************************************************************                                                         

                        Parameter Estimates                                                                                              

                     Parameter       Standard                                                                                            

Variable     DF       Estimate          Error    t Value    Pr > |t|                                                                     

Intercept     1     -127.59569       12.68526     -10.06      <.0001                                                                     

x1            1        0.34846        0.05369       6.49      <.0001                                                                     

x3            1        1.82321        0.12307      14.81      <.0001 

Table 6. 
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 According to Table 6. if we can efford two explanatory variables in the model, these 

variables should be 1X  and 3X . If we can efford one more variable, we can consider the full 

model as it is given in the equation (3), the value of is observed as R2=0.9555 and all the 

parameters are significant except 2 . 

 As a conclution, if we want to use three explanatory variables in the multiple regression it 

should be 

  0 1 1, 3 3, 4 4, , 1,2,3,...,25i i i i iY x x x e i         . 

 However, if we have to eliminate one more explanatory variable the model should include 

1X  and 3X  namely, 

   0 1 1, 3 3, , 1,2,3,...,25i i i iY x x e i       . 

 In a summary, there is no contribution of 2X . In the multiple regression model a set of 

explanatory variables is 1 3{ , }x x  or 1 3 4{ , , }x x x  depending on the the number of explanatory 

variables desired to be used.   

 


