
Section 2.7 An Introduction to the Periodic Table

The Periodic Table

Section 2.7 An Introduction to the Periodic Table

Groups or Families

 Table of common charges formed when creating ionic compounds.

Group or Family	Charge
Alkali Metals (1A)	1+
Alkaline Earth Metals (2A)	2+
Halogens (7A)	1—
Noble Gases (8A)	0

Naming Compounds

- Binary Compounds
 - Composed of two elements
 - Ionic and covalent compounds included
- Binary Ionic Compounds
 - Metal—nonmetal
- Binary Covalent Compounds
 - Nonmetal—nonmetal

Binary Ionic Compounds (Type I)

- 1. The cation is always named first and the anion second.
- 2. A monatomic cation takes its name from the name of the parent element.
- 3. A monatomic anion is named by taking the root of the element name and adding *-ide*.


Binary Ionic Compounds (Type I)

Examples:

KCl Potassium chloride

MgBr₂ Magnesium bromide

CaO Calcium oxide

Binary Ionic Compounds (Type II)

- Metals in these compounds form more than one type of positive ion.
- Charge on the metal ion must be specified.
- Roman numeral indicates the charge of the metal cation.
- Transition metal cations usually require a Roman numeral.
- Elements that form only one cation do not need to be identified by a roman numeral.

Binary Ionic Compounds (Type II)

Examples:

CuBr

Copper(I) bromide

FeS

Iron(II) sulfide

PbO₂

Lead(IV) oxide

Polyatomic Ions

- Must be memorized (see Table 2.5 on pg. 65 in text).
- Examples of compounds containing polyatomic ions:

NaOH Sodium hydroxide


 $Mg(NO_3)_2$ Magnesium nitrate

 $(NH_4)_2SO_4$ Ammonium sulfate

Binary Covalent Compounds (Type III)

- Formed between two nonmetals.
- 1. The first element in the formula is named first, using the full element name.
- 2. The second element is named as if it were an anion.
- Prefixes are used to denote the numbers of atoms present.
- 4. The prefix *mono* is never used for naming the first element.

Prefixes Used to Indicate Number in Chemical Names

Table 2.6 Prefixes Used to Indicate Number in Chemical Names

Prefix	Number Indicated
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

© Cengage Learning. All Rights Reserved

Binary Covalent Compounds (Type III)

Examples:

 CO_2

Carbon dioxide

SF₆

Sulfur hexafluoride

 N_2O_4

Dinitrogen tetroxide

Acids

- Acids can be recognized by the hydrogen that appears first in the formula—HCl.
- Molecule with one or more H⁺ ions attached to an anion.

Acids

If the anion does not contain oxygen, the acid is named with the prefix hydro— and the suffix —ic.

Examples:

HCl Hydrochloric acid

HCN Hydrocyanic acid

H₂S Hydrosulfuric acid

Acids

- If the anion does contain oxygen:
 - The suffix –ic is added to the root name if the anion name ends in –ate.
- Examples:

HNO₃ Nitric acid

H₂SO₄ Sulfuric acid

 $HC_2H_3O_2$ Acetic acid

Acids

- If the anion does contain oxygen:
 - The suffix -ous is added to the root name if the anion name ends in -ite.

Examples:

HNO₂ Nitrous acid

H₂SO₃ Sulfurous acid

HClO₂ Chlorous acid