Section 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes

Nature of Aqueous Solutions

- Solute substance being dissolved.
- Solvent liquid water.
- Electrolyte substance that when dissolved in water produces a solution that can conduct electricity.

Section 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes

Electrolytes

- Strong Electrolytes conduct current very efficiently (bulb shines brightly). Completely ionized in water.
- Weak Electrolytes conduct only a small current (bulb glows dimly). A small degree of ionization in water.
- Nonelectrolytes no current flows (bulb remains unlit).
 Dissolves but does not produce any ions.

Chemical Reactions of Solutions

- We must know:
 - The nature of the reaction.
 - The amounts of chemicals present in the solutions.

Molarity

 Molarity (M) = moles of solute per volume of solution in liters:

 $M = Molarity = \frac{moles of solute}{liters of solution}$

 $3 M HCI = \frac{6 \text{ moles of HCI}}{2 \text{ liters of solution}}$

Concentration of lons

- For a 0.25 M CaCl₂ solution: CaCl₂ → Ca²⁺ + 2Cl⁻
 - Ca^{2+} : 1 × 0.25 M = 0.25 M Ca^{2+}
 - $CI^-: 2 \times 0.25 M = 0.50 M CI^-.$

Notice

- The solution with the greatest number of ions is not necessarily the one in which:
 - the volume of the solution is the largest.
 - the formula unit has the greatest number of ions.

Dilution

- The process of adding water to a concentrated or stock solution to achieve the molarity desired for a particular solution.
- Dilution with water does not alter the numbers of moles of solute present.
- Moles of solute before dilution = moles of solute after dilution

$$M_1V_1 = M_2V_2$$

Section 4.4 *Types of Chemical Reactions*

- Precipitation Reactions
- Acid–Base Reactions
- Oxidation—Reduction Reactions

Section 4.5 *Precipitation Reactions*

Precipitation Reaction

- A double displacement reaction in which a solid forms and separates from the solution.
 - When ionic compounds dissolve in water, the resulting solution contains the separated ions.
 - Precipitate the solid that forms.

Section 4.5 *Precipitation Reactions*

Precipitates

- Soluble solid dissolves in solution; (aq) is used in reaction equation.
- Insoluble solid does not dissolve in solution; (s) is used in reaction equation.
- Insoluble and slightly soluble are often used interchangeably.

Section 4.5 *Precipitation Reactions*

Simple Rules for Solubility

- 1. Most nitrate (NO_3^-) salts are soluble.
- 2. Most alkali metal (group 1A) salts and NH_4^+ are soluble.
- 3. Most Cl⁻, Br⁻, and l⁻ salts are soluble (except Ag⁺, Pb²⁺, Hg₂²⁺).
- Most sulfate salts are soluble (except BaSO₄, PbSO₄, Hg₂SO₄, CaSO₄).
- Most OH⁻ are only slightly soluble (NaOH, KOH are soluble, Ba(OH)₂, Ca(OH)₂ are marginally soluble).
- 6. Most S^{2–}, CO₃^{2–}, CrO₄^{2–}, PO₄^{3–} salts are only slightly soluble, except for those containing the cations in Rule 2.

Formula Equation (Molecular Equation)

- Gives the overall reaction stoichiometry but not necessarily the actual forms of the reactants and products in solution.
- Reactants and products generally shown as compounds.
- Use solubility rules to determine which compounds are aqueous and which compounds are solids.

 $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$

Section 4.6 Describing Reactions in Solution

Net Ionic Equation

- Includes only those solution components undergoing a change.
 - Show only components that actually react.

 $Ag^{+}(aq) + CI^{-}(aq) \longrightarrow AgCI(s)$

- Spectator ions are not included (ions that do not participate directly in the reaction).
 - Na⁺ and NO₃⁻ are spectator ions.

Solving Stoichiometry Problems for Reactions in Solution

- 1. Identify the species present in the combined solution, and determine what reaction occurs.
- 2. Write the balanced net ionic equation for the reaction.
- 3. Calculate the moles of reactants.
- 4. Determine which reactant is limiting.
- 5. Calculate the moles of product(s), as required.
- 6. Convert to grams or other units, as required.

Section 4.7 Stoichiometry of Precipitation Reactions

Let's Think About It

- Where are we going?
 - To find the mass of solid $Pb_3(PO_4)_2$ formed.
- How do we get there?
 - What are the ions present in the combined solution?
 - What is the balanced net ionic equation for the reaction?
 - What are the moles of reactants present in the solution?
 - Which reactant is limiting?
 - What moles of Pb₃(PO₄)₂ will be formed?
 - What mass of Pb₃(PO₄)₂ will be formed?

Section 4.7 Stoichiometry of Precipitation Reactions

CONCEPT CHECK! (Part II)

10.0 mL of a 0.30 *M* sodium phosphate solution reacts with 20.0 mL of a 0.20 *M* lead(II) nitrate solution (assume no volume change).

What is the concentration of nitrate ions left in solution after the reaction is complete?
 0.27 M

Let's Think About It

- Where are we going?
 - To find the concentration of nitrate ions left in solution after the reaction is complete.
- How do we get there?
 - What are the moles of nitrate ions present in the combined solution?
 - What is the total volume of the combined solution?

Let's Think About It

- Where are we going?
 - To find the concentration of phosphate ions left in solution after the reaction is complete.
- How do we get there?
 - What are the moles of phosphate ions present in the solution at the start of the reaction?
 - How many moles of phosphate ions were used up in the reaction to make the solid Pb₃(PO₄)₂?
 - How many moles of phosphate ions are left over after the reaction is complete?
 - What is the total volume of the combined solution?

Acid–Base Reactions (Brønsted–Lowry)

- Acid—proton donor
- Base—proton acceptor
- For a strong acid and base reaction: $H^+(aq) + OH^-(aq) \longrightarrow H_2O(I)$

Performing Calculations for Acid–Base Reactions

- 1. List the species present in the combined solution *before any reaction occurs*, and decide what reaction will occur.
- 2. Write the balanced net ionic equation for this reaction.
- 3. Calculate moles of reactants.
- 4. Determine the limiting reactant, where appropriate.
- 5. Calculate the moles of the required reactant or product.
- 6. Convert to grams or volume (of solution), as required.

Acid–Base Titrations

- Titration delivery of a measured volume of a solution of known concentration (the titrant) into a solution containing the substance being analyzed (the analyte).
- Equivalence point enough titrant added to react exactly with the analyte.
- Endpoint the indicator changes color so you can tell the equivalence point has been reached.

Let's Think About It

- Where are we going?
 - To find the moles of NaOH required for the reaction.
- How do we get there?
 - What are the ions present in the combined solution? What is the reaction?
 - What is the balanced net ionic equation for the reaction?
 - What are the moles of H⁺ present in the solution?
 - How much OH⁻ is required to react with all of the H⁺ present?

Section 4.9 Oxidation-Reduction Reactions

Redox Reactions

 Reactions in which one or more electrons are transferred.

Rules for Assigning Oxidation States

- 1. Oxidation state of an atom in an element = 0
- 2. Oxidation state of monatomic ion = charge of the ion
- 3. Oxygen = -2 in covalent compounds (except in peroxides where it = -1)
- 4. Hydrogen = +1 in covalent compounds
- 5. Fluorine = -1 in compounds
- 6. Sum of oxidation states = 0 in compounds
- 7. Sum of oxidation states = charge of the ion in ions

Section 4.9 Oxidation-Reduction Reactions

Redox Characteristics

- Transfer of electrons
- Transfer may occur to form ions
- Oxidation increase in oxidation state (loss of electrons); reducing agent
- Reduction decrease in oxidation state (gain of electrons); oxidizing agent

Balancing Oxidation–Reduction Reactions by Oxidation States

- 1. Write the unbalanced equation.
- 2. Determine the oxidation states of all atoms in the reactants and products.
- 3. Show electrons gained and lost using "tie lines."
- 4. Use coefficients to equalize the electrons gained and lost.
- 5. Balance the rest of the equation by inspection.
- 6. Add appropriate states.

 Balance the reaction between solid zinc and aqueous hydrochloric acid to produce aqueous zinc(II) chloride and hydrogen gas.